搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁拓扑的多腔体屏蔽效能快速算法

阚勇 闫丽萍 赵翔 周海京 刘强 黄卡玛

引用本文:
Citation:

基于电磁拓扑的多腔体屏蔽效能快速算法

阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛

Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures

Kan Yong, Yan Li-Ping, Zhao Xiang, Zhou Hai-Jing, Liu Qiang, Huang Ka-Ma
PDF
导出引用
  • 提出基于电磁拓扑理论计算开孔多腔体屏蔽效能的快速方法. 首先给出双腔体等效电路和电磁拓扑信号流图, 并推导孔缝节点处的散射矩阵, 给出拓扑网络的散射矩阵方程和传输矩阵方程, 获得双腔体的广义Baum-Liu-Tesche (BLT)方程. 在此基础上研究了开孔三腔体, 包括串型级联三腔体和串并型混合级联三腔体的广义BLT方程. 对于串型级联三腔体, 其电磁拓扑网络和广义BLT 方程在双腔体基础上直接扩展即可获得. 而对于串并型混合级联三腔体, 通过将位于三腔体公共面上的孔缝等效为三端口网络节点, 并根据三端口网络散射参数定义推导获得该节点的散射矩阵, 最终得到串并型混合级联三腔体的广义BLT方程. 本文方法对双腔体的计算结果与文献结果和实验结果相符合, 对3组不同类型和尺寸开孔腔的屏蔽效能的计算结果与时域有限差分法计算结果符合较好. 该算法不仅效率高, 通过对所有计算结果和实验结果的误差统计分析, 表明该算法具有较高的计算准确度.
    Shielding effectiveness (SE) estimation for an enclosure with apertures has been an attractive issue in electromagnetic compatibility (EMC) research area. Though many fast algorithms are developed for SE calculation, they mainly focus on the case of single cavity. Moreover, most of these methods neglect the wave coupling through apertures from enclosure to outside. A fast algorithm based on electromagnetic topology is proposed for calculating the SE of cascading multiple enclosures with apertures. In this algorithm, the wave coupling through apertures in both directions is taken into consideration. Firstly, the equivalent circuital model of cascading double enclosures and its signal flow graph of electromagnetic topology are given, followed by the derivation of scattering matrix of apertures node. Then propagation relationships at tube level and reflection relationships at node level are derived. As a result, the general BLT (Baum-Liu-Tesche) equation for voltage calculation at each node is established. Two major categories of cascading three enclosures with apertures are investigated. For serially cascading three enclosures, the general BLT equations are extended on the basis of BLT equations for cascading double enclosures, since the structures are a simple extension of them. For hybrid serially-parallelly cascading three enclosures, the common walls between the main enclosure and two sub-enclosures are considered as a topological node represented by a three-port network, whose scattering matrix is derived according to the definition of scattering parameters. Consequently, the general BLT equations for hybrid serially-parallelly cascading three enclosures are developed. Compared to the algorithms presented in the relevant literature, the topology-based algorithm proposed in this paper can not only calculate the shielding effectiveness for cascading multiple enclosures, but also lead to more accurate results in that the impedance of apertures is obtained through using diaphragms model. In order to validate the proposed method, a cascading double enclosures from a literature is chosen as an example. Calculated SE results are in good agreement with those in the literature. Then, three enclosures with different configurations and dimensions are also designed to validate the proposed method. Results from the proposed method are compared with those from the finite difference time domain (FDTD) method, and they are found to be in good agreement with each other. Experimental results also demonstrate the validation of the proposed method. Especially, the proposed method takes far less time to calculate SE than for FDTD method.
      通信作者: 闫丽萍, liping_yan@scu.edu.cn
    • 基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金资助(批准号: U1530143, 11176017)和国家重点基础研究发展计划(批准号: 2013CB328904)资助的课题.
      Corresponding author: Yan Li-Ping, liping_yan@scu.edu.cn
    • Funds: Project supported by NSAF (Grant No. U1530143, 11176017) and National Basic Research Program of China (Grant No. 2013CB328904).
    [1]

    Cerri G, De Leo R, Primiani V M 1992 IEEE Trans. Electromagn. Compatib. 34 423

    [2]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [3]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [4]

    Zhang Y P, Da X Y, Zhu Y K, Zhao M 2014 Acta Phys. Sin. 63 234101 (in Chinese) [张亚普, 达新宇, 祝杨坤, 赵蒙 2014 物理学报 63 234101]

    [5]

    Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Anten. Propag. 38 1805

    [7]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709

    [8]

    Jiao C, Li L, Cui X, Li H 2006 IEEE Trans. Magn. 42 1075

    [9]

    10 Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compatib. 37 488

    [10]

    Nie B L, Du P A, Yu Y T, Shi D 2011 IEEE Trans. Electromagn. Compatib. 53 73

    [11]

    Robinson M P, Turner J D, Thomas D W P, Dawson J F, Ganley M D, Marvin A C, Porter S J, Benson T M, Christopoulos C 1996 IEEE Electron. Lett. 32 1559

    [12]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compatib. 40 240

    [13]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compatib. 52 566

    [14]

    Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compatib. 56 589

    [15]

    Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compatib. 57 357

    [16]

    Konefal T, Dawson J F, Denton A C, Benson T M, Christopoulos C, Marvin A C, Porter S J, Thomas D W P 2001 IEEE Trans. Electromagn. Compatib. 43 273

    [17]

    Parisa D, Ahad T, Mohammad A 2012 IEEE Trans. Electromagn. Compatib. 54 792

    [18]

    Tesche F M 1978 IEEE Trans. Anten. Propag. 26 60

    [19]

    Baum C E, Liu T K, Tesche F M 1978 Interactions Note 350

    [20]

    Baum C E 2005 Electromagnetics 25 623

    [21]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 26 023204 (in Chinese) [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 26 023204]

    [22]

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701 (in Chinese) [罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701]

    [23]

    Song H, Rao Y P, Zhang C, Zhou D F, Hou D T 2008 High Power Laser and Particle Beams 20 1684 (in Chinese) [宋航, 饶育萍, 张超, 周东方, 侯德亭 2008 强激光与粒子束 20 1684]

    [24]

    Hao C, Li D H 2014 Chin. J. Radio Sci. 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]

    [25]

    Hao C, Li D H 2014 IEEE Trans. Electromagn. Compatib. 56 335

    [26]

    Xue M F, Yin W Y, Liu Q F, Mao J F 2008 IEEE Trans. Electromagn. Compatib. 50 928

  • [1]

    Cerri G, De Leo R, Primiani V M 1992 IEEE Trans. Electromagn. Compatib. 34 423

    [2]

    Jiao C Q, Zhu H Z 2013 Chin. Phys. B 22 084101

    [3]

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 114102]

    [4]

    Zhang Y P, Da X Y, Zhu Y K, Zhao M 2014 Acta Phys. Sin. 63 234101 (in Chinese) [张亚普, 达新宇, 祝杨坤, 赵蒙 2014 物理学报 63 234101]

    [5]

    Liu B, Liu Q, Kan Y, Zhao X, Zhou H J, Yan L P 2015 High Power Laser and Particle Beams 27 053203 (in Chinese) [刘备, 刘强, 阚勇, 赵翔, 周海京, 闫丽萍 2015 强激光与粒子束 27 053203]

    [6]

    Wang T, Harrington R F, Mautz J R 1990 IEEE Trans. Anten. Propag. 38 1805

    [7]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709

    [8]

    Jiao C, Li L, Cui X, Li H 2006 IEEE Trans. Magn. 42 1075

    [9]

    10 Render M C, Marvin A C 1995 IEEE Trans. Electromagn. Compatib. 37 488

    [10]

    Nie B L, Du P A, Yu Y T, Shi D 2011 IEEE Trans. Electromagn. Compatib. 53 73

    [11]

    Robinson M P, Turner J D, Thomas D W P, Dawson J F, Ganley M D, Marvin A C, Porter S J, Benson T M, Christopoulos C 1996 IEEE Electron. Lett. 32 1559

    [12]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compatib. 40 240

    [13]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Trans. Electromagn. Compatib. 52 566

    [14]

    Liu E B, Du P A, Nie B L 2014 IEEE Trans. Electromagn. Compatib. 56 589

    [15]

    Nie B L, Du P A 2015 IEEE Trans. Electromagn. Compatib. 57 357

    [16]

    Konefal T, Dawson J F, Denton A C, Benson T M, Christopoulos C, Marvin A C, Porter S J, Thomas D W P 2001 IEEE Trans. Electromagn. Compatib. 43 273

    [17]

    Parisa D, Ahad T, Mohammad A 2012 IEEE Trans. Electromagn. Compatib. 54 792

    [18]

    Tesche F M 1978 IEEE Trans. Anten. Propag. 26 60

    [19]

    Baum C E, Liu T K, Tesche F M 1978 Interactions Note 350

    [20]

    Baum C E 2005 Electromagnetics 25 623

    [21]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 26 023204 (in Chinese) [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 26 023204]

    [22]

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701 (in Chinese) [罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701]

    [23]

    Song H, Rao Y P, Zhang C, Zhou D F, Hou D T 2008 High Power Laser and Particle Beams 20 1684 (in Chinese) [宋航, 饶育萍, 张超, 周东方, 侯德亭 2008 强激光与粒子束 20 1684]

    [24]

    Hao C, Li D H 2014 Chin. J. Radio Sci. 29 114 (in Chinese) [郝翠, 李邓化 2014 电波科学学报 29 114]

    [25]

    Hao C, Li D H 2014 IEEE Trans. Electromagn. Compatib. 56 335

    [26]

    Xue M F, Yin W Y, Liu Q F, Mao J F 2008 IEEE Trans. Electromagn. Compatib. 50 928

  • [1] 朱明杰, 赵微, 王治海. 巨腔系统中的光子屏蔽. 物理学报, 2023, 72(9): 094202. doi: 10.7498/aps.72.20230049
    [2] 吕晓龙, 陆浩然, 郭云胜. Mie谐振耦合的亚波长金属孔宽带高透射传输. 物理学报, 2021, 70(3): 034201. doi: 10.7498/aps.70.20201121
    [3] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [4] 廖意, 蔡昆, 张元, 王晓冰. 高浓度纤维增强材料介电特性计算方法. 物理学报, 2016, 65(2): 024102. doi: 10.7498/aps.65.024102
    [5] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型. 物理学报, 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [6] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [7] 罗静雯, 杜平安, 任丹, 聂宝林. 一种基于BLT方程的孔缝箱体屏蔽效能计算方法. 物理学报, 2015, 64(1): 010701. doi: 10.7498/aps.64.010701
    [8] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [9] 魏星, 闫镔, 张峰, 李永丽, 席晓琦, 李磊. 多金属物体CT图像的金属伪影校正. 物理学报, 2014, 63(5): 058702. doi: 10.7498/aps.63.058702
    [10] 张亚普, 达新宇, 祝杨坤, 赵蒙. 电大开孔箱体屏蔽效能分析解析模型. 物理学报, 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [11] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [12] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [13] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [14] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [15] 刘俊, 林皋, 李建波. 带双层开孔外筒的圆筒结构的水动力特性研究. 物理学报, 2012, 61(12): 120202. doi: 10.7498/aps.61.120202
    [16] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [17] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [18] 崔战友, 陈天宁, 许锐奇, 吴九汇. 二维开缝金属圆管带隙结构禁带特性中缝参数的研究. 物理学报, 2009, 58(7): 4752-4759. doi: 10.7498/aps.58.4752
    [19] 廖 旭, 任学藻, 周自刚. 耦合孔对微波腔的影响研究. 物理学报, 2008, 57(7): 3949-3953. doi: 10.7498/aps.57.3949
    [20] 侯春风, 袁保红, 孙秀冬, 许克彬. 非相干耦合屏蔽光伏孤子对. 物理学报, 2000, 49(10): 1969-1972. doi: 10.7498/aps.49.1969
计量
  • 文章访问数:  4981
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2015-10-28
  • 刊出日期:  2016-02-05

/

返回文章
返回