搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究

白婉欣 李天乐 郭安琪 成睿琦 焦重庆

引用本文:
Citation:

平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究

白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆

Analytical theory on electromagnetic shielding effectiveness of infinite conductor plate with periodic aperture array under plane wave illumination

Bai Wan-Xin, Li Tian-Le, Guo An-Qi, Cheng Rui-Qi, Jiao Chong-Qing
PDF
HTML
导出引用
  • 本文针对平面电磁波对无限大导体平板上周期孔阵的透射问题, 首先用Bethe小孔理论将孔阵表示成偶极子阵列, 然后用平均化处理得到均匀的等效磁化/极化强度, 进而引入等效面源导出透射电磁波表达式, 最终给出了孔阵对平面电磁波屏蔽效能的解析公式. 该公式分别针对横电和横磁两种极化方式, 将屏蔽效能表示成孔阵周期面积、孔的极化系数、波长和入射角的简单函数, 其计算结果与全波仿真结果一致性好. 结果表明, 透射场强的幅值与孔极化系数和波频率成正比, 与周期面积成反比; 在横电极化方式, 波频率和周期面积不变的情况下, 透射场强的幅值与入射角的余弦值成正比, 入射角越大屏蔽效能越高; 在横磁极化方式下,透射场强幅值与入射角的关系相对复杂, 但在入射角较小时与入射角的余弦值近似成反比, 总体上入射角越大屏蔽效果越低.
    Penetration of a plane electromagnetic wave through the apertures on a perfectly conducting flat plate is a classical electromagnetic problem. In some practical applications like electromagnetic shielding, where only the fields far from the apertures are concerned and the aperture sizes are small compared with a wavelength, the role of apertures can be represented by the equivalent electric and magnetic dipoles located in the centers of the apertures. In principle, the penetration field can be expressed as the superposition of the radiation fields of the dipoles. However, the direct superposition leads to a double series with complex form and poor convergence. On the other hand, this problem may also be solved by full wave numerical simulations. Even so, finding analytical solutions is still desirable considering that it is clear in physical significance and easy to implement. In this paper, the analytical formula of the penetration fields are derived for both TE and TM polarization mode with different angles of incidence. The derivation is carried out firstly by averagely distributing each dipole moment within each periodic unit. As a result, the dipole array is replaced with a flat sheet with uniform magnetization and polarization intensity. Then, the equivalent surface current and charge distributions are obtained directly from the polarization intensity. Finally, the penetration fields are treated as the radiation fields of the surface sources. It is shown that the amplitude of the penetration field is proportional to aperture magnetic polarization coefficient and wave frequency, and it is inversely proportional to the area of a periodic unit. In regard to the effect of the incidence angle, the amplitude of the penetration field is proportional to the cosine of the incidence angle for TE polarization. However, for the TM polarization, the relationship is a little complicated due to the coexistence of electric and magnetic dipoles: the field is not rigorously inversely proportional to the cosine of the incidence angle due to the existence of a correction term involving both the polarization coefficient and the sine of the angle. The formula is used to calculate the shielding effectiveness for several different aperture shapes and different incidence angles. The results are in good agreement with those from the full wave simulation software.
      通信作者: 焦重庆, cqjiao@ncepu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFB0902400)和中央高校基本科研业务费专项资金(批准号:2019MS003)资助的课题.
      Corresponding author: Jiao Chong-Qing, cqjiao@ncepu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFB0902400) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2019MS003).
    [1]

    阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛 2016 物理学报 65 030702Google Scholar

    Kan Y, Yan L P, Zhao X, Zhou H J, Liu Q, Huang K M 2016 Acta Phys. Sin. 65 030702Google Scholar

    [2]

    Mcdowell A J, Hubing T H 2014 IEEE Trans. Electromagn. Compat 56 1711Google Scholar

    [3]

    焦重庆, 牛帅, 李琳 2015 电工技术学报 30 1Google Scholar

    Jiao C Q, Niu S, Li L 2015 Transactions of China Electrotechnical Society 30 1Google Scholar

    [4]

    罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701Google Scholar

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701Google Scholar

    [5]

    段兴跃, 李小康, 程谋森, 李干 2016 物理学报 65 197901Google Scholar

    Duan X Y, Li X K, Cheng M S, Li G 2016 Acta Phys. Sin 65 197901Google Scholar

    [6]

    Nie B L, Du P A, Yu Y T, Shi Z 2011 IEEE Trans. Electromagn. Compat. 53 73Google Scholar

    [7]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 物理学报 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W K 2014 Acta Phys. Sin. 63 120701Google Scholar

    [8]

    焦重庆, 牛帅 2013 物理学报 62 114102Google Scholar

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102Google Scholar

    [9]

    Zhao Y L, Ma F H, Li X F, Ma J J, Jia K 2018 Chin. Phys. B 27 027302Google Scholar

    [10]

    彭强, 周东方, 侯德亭, 余道杰, 胡涛, 王利萍, 夏蔚 2013 强激光与粒子束 25 2355

    Peng Q, Zhou D F, Hou D T, Yu D J, Hu T, Wang L P, Xia W 2013 High Power Laser and Particle Beams 25 2355

    [11]

    Li B, Dong H, Huang X L, Qiu Y, Tao Q, Zhu J M 2018 Chin. Phys. B 27 020701Google Scholar

    [12]

    毛湘宇, 杜平安, 聂宝林 2009 系统仿真学报 21 7493

    Mao X Y, Du P A, Nie B L 2009 Journal of System Simulation 21 7493

    [13]

    Frikha A, Bensetti M, Duval F, Benjelloun N, Lafon F, Pichon L 2015 IEEE Trans. Magn. 51 1

    [14]

    García-Pérez L G, Lozano-Guerrero A J, Blázquez-Ruiz J M, Valenzuela-Valdés J F, Monzó-Cabrera J, Fayos-Fernández J, Díaz-Morcillo A 2017 IEEE Trans. Electromagn. Compat. 59 789Google Scholar

    [15]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709Google Scholar

    [16]

    Ali S, Weile D, Clupper T 2005 IEEE Trans. Electromagn. Compat. 47 367Google Scholar

    [17]

    Wallyn W, De Zutter D, Rogier H 2002 IEEE Trans. Electromagn. Compat. 44 130Google Scholar

    [18]

    焦重庆, 李顺杰 2016 电工技术学报 31 112Google Scholar

    Jiao C Q, Li S J 2016 Transactions of China Electrotechnical Society 31 112Google Scholar

    [19]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 44 240

    [20]

    焦重庆, 齐磊 2012 物理学报 61 134104Google Scholar

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104Google Scholar

    [21]

    Otoshi T Y 1972 IEEE Trans. Microwave Theory Tech. 20 235Google Scholar

    [22]

    Hyun S Y, Jung I, Hong I P, Jung C, Kim E J, Yook J G 2016 IEEE Trans. Electromagn. Compat. 58 911Google Scholar

    [23]

    Bethe H A 1944 Phys. Rev. 66 163Google Scholar

    [24]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252Google Scholar

    [25]

    Tesche F M, Ianoz M V, Karlsson T 1997 EMC Analysis Methods and Computational Models(New York: John Wiley& Sons)pp208—211

    [26]

    Cohn S B 1951 Proc. IRE 39 1416Google Scholar

  • 图 1  平面波垂直入射开孔导体板示意图

    Fig. 1.  Conductor plate with holes illuminated by a plane wave with vertical polarization.

    图 2  TE极化平面波入射均匀开孔导体板示意图

    Fig. 2.  Conductor plate with holes illuminated by a plane wave of TE polarization.

    图 3  TM极化平面波入射均匀开孔金属板

    Fig. 3.  Conductor plate with holes illuminated by a plane wave of TM polarization.

    图 4  d1/d2对屏蔽效能的影响

    Fig. 4.  Dependence of the SE on frequency for different d1/d2.

    图 5  板厚度对屏蔽效能的影响

    Fig. 5.  Dependence of the SE on frequency for different thicknesses of the plane.

    图 6  圆形孔开孔大小对屏蔽效能的影响

    Fig. 6.  Dependence of the SE on frequency for circular apertures with different radius.

    图 7  椭圆开孔示意图

    Fig. 7.  Diagram of elliptical opening.

    图 8  椭圆孔开孔大小对屏蔽效能的影响

    Fig. 8.  Dependence of SE on frequency of different elliptical apertures with different size.

    图 9  方形、十字形开孔示意图

    Fig. 9.  Diagram of square and cross opening.

    图 10  不同形状开孔板的屏蔽效能随频率的变化

    Fig. 10.  Dependence of SE on frequency of different elliptical apertures with different size.

    图 11  混合形状开孔周期单元示意图

    Fig. 11.  Diagram of the unit cell of mix shape opening.

    图 12  混合形状开孔的屏蔽效能随频率的变化

    Fig. 12.  Dependence of SE on frequency of apertures with mix shape.

    图 13  圆形孔屏蔽效能随入射角的变化(r = 0.5 cm)

    Fig. 13.  Dependence of SE on angle of incidence of different polarization of circular apertures (r = 0.5 cm).

    图 14  椭圆孔屏蔽效能随入射角的变化(l = 2 cm)

    Fig. 14.  Dependence of SE on angle of incidence of different polarization of elliptical apertures (l = 2 cm).

    表 1  常见开孔形状极化系数

    Table 1.  Polarization coefficients of typical opening shapes.

    孔形状${\alpha _{\rm{e}}}$${\alpha _{{\rm{m}}x}}$${\alpha _{{\rm{m}}y}}$
    圆形(r为半径)$\frac{{2{r^3}}}{3}$$\frac{{4{r^3}}}{3}$$\frac{{4{r^3}}}{3}$
    椭圆(l为长轴,沿x方向,w为短轴)$\frac{{\text{π}}}{{24}} \cdot \frac{{{w^2}l}}{{{\rm{E}}(e)}}$$\frac{{\text{π}}}{{24}} \cdot \frac{{{e^2}{l^3}}}{{K(e) - E(e)}}$$\frac{{\text{π}}}{{24}} \cdot \frac{{{e^2}{l^3}}}{{{{(l/w)}^2}E(e) - K(e)}}$
    下载: 导出CSV
  • [1]

    阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛 2016 物理学报 65 030702Google Scholar

    Kan Y, Yan L P, Zhao X, Zhou H J, Liu Q, Huang K M 2016 Acta Phys. Sin. 65 030702Google Scholar

    [2]

    Mcdowell A J, Hubing T H 2014 IEEE Trans. Electromagn. Compat 56 1711Google Scholar

    [3]

    焦重庆, 牛帅, 李琳 2015 电工技术学报 30 1Google Scholar

    Jiao C Q, Niu S, Li L 2015 Transactions of China Electrotechnical Society 30 1Google Scholar

    [4]

    罗静雯, 杜平安, 任丹, 聂宝林 2015 物理学报 64 010701Google Scholar

    Luo J W, Du P A, Ren D, Nie B L 2015 Acta Phys. Sin. 64 010701Google Scholar

    [5]

    段兴跃, 李小康, 程谋森, 李干 2016 物理学报 65 197901Google Scholar

    Duan X Y, Li X K, Cheng M S, Li G 2016 Acta Phys. Sin 65 197901Google Scholar

    [6]

    Nie B L, Du P A, Yu Y T, Shi Z 2011 IEEE Trans. Electromagn. Compat. 53 73Google Scholar

    [7]

    任丹, 杜平安, 聂宝林, 曹钟, 刘文奎 2014 物理学报 63 120701Google Scholar

    Ren D, Du P A, Nie B L, Cao Z, Liu W K 2014 Acta Phys. Sin. 63 120701Google Scholar

    [8]

    焦重庆, 牛帅 2013 物理学报 62 114102Google Scholar

    Jiao C Q, Niu S 2013 Acta Phys. Sin. 62 114102Google Scholar

    [9]

    Zhao Y L, Ma F H, Li X F, Ma J J, Jia K 2018 Chin. Phys. B 27 027302Google Scholar

    [10]

    彭强, 周东方, 侯德亭, 余道杰, 胡涛, 王利萍, 夏蔚 2013 强激光与粒子束 25 2355

    Peng Q, Zhou D F, Hou D T, Yu D J, Hu T, Wang L P, Xia W 2013 High Power Laser and Particle Beams 25 2355

    [11]

    Li B, Dong H, Huang X L, Qiu Y, Tao Q, Zhu J M 2018 Chin. Phys. B 27 020701Google Scholar

    [12]

    毛湘宇, 杜平安, 聂宝林 2009 系统仿真学报 21 7493

    Mao X Y, Du P A, Nie B L 2009 Journal of System Simulation 21 7493

    [13]

    Frikha A, Bensetti M, Duval F, Benjelloun N, Lafon F, Pichon L 2015 IEEE Trans. Magn. 51 1

    [14]

    García-Pérez L G, Lozano-Guerrero A J, Blázquez-Ruiz J M, Valenzuela-Valdés J F, Monzó-Cabrera J, Fayos-Fernández J, Díaz-Morcillo A 2017 IEEE Trans. Electromagn. Compat. 59 789Google Scholar

    [15]

    Benhassine S, Pichon L, Tabbara W 2002 IEEE Trans. Magn. 38 709Google Scholar

    [16]

    Ali S, Weile D, Clupper T 2005 IEEE Trans. Electromagn. Compat. 47 367Google Scholar

    [17]

    Wallyn W, De Zutter D, Rogier H 2002 IEEE Trans. Electromagn. Compat. 44 130Google Scholar

    [18]

    焦重庆, 李顺杰 2016 电工技术学报 31 112Google Scholar

    Jiao C Q, Li S J 2016 Transactions of China Electrotechnical Society 31 112Google Scholar

    [19]

    Robinson M P, Benson T M, Christopoulos C, Dawson J F, Ganley M D, Marvin A C, Porter S J, Thomas D W P 1998 IEEE Trans. Electromagn. Compat. 44 240

    [20]

    焦重庆, 齐磊 2012 物理学报 61 134104Google Scholar

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 134104Google Scholar

    [21]

    Otoshi T Y 1972 IEEE Trans. Microwave Theory Tech. 20 235Google Scholar

    [22]

    Hyun S Y, Jung I, Hong I P, Jung C, Kim E J, Yook J G 2016 IEEE Trans. Electromagn. Compat. 58 911Google Scholar

    [23]

    Bethe H A 1944 Phys. Rev. 66 163Google Scholar

    [24]

    Nitsch J B, Tkachenko S V, Potthast S 2012 IEEE Trans. Electromagn. Compat. 54 1252Google Scholar

    [25]

    Tesche F M, Ianoz M V, Karlsson T 1997 EMC Analysis Methods and Computational Models(New York: John Wiley& Sons)pp208—211

    [26]

    Cohn S B 1951 Proc. IRE 39 1416Google Scholar

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240339
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [3] 李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠. 低光学衍射随机六元环金属网络导电膜. 物理学报, 2022, 71(13): 134202. doi: 10.7498/aps.71.20212010
    [4] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [5] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [6] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [7] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [8] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [9] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [10] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [11] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数. 物理学报, 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
    [12] 徐晓华, 姜浩, 傅荣堂, 孙鑫. 耦合量子点的反常极化. 物理学报, 2000, 49(3): 426-429. doi: 10.7498/aps.49.426
    [13] 侯春风, 袁保红, 孙秀冬, 许克彬. 非相干耦合屏蔽光伏孤子对. 物理学报, 2000, 49(10): 1969-1972. doi: 10.7498/aps.49.1969
    [14] 李景德, 李智强, 陆夏莲, 沈 韩. 铁电屏蔽理论. 物理学报, 2000, 49(1): 160-163. doi: 10.7498/aps.49.160
    [15] 方泉玉, 蔡 蔚, 邹 宇, 李 萍. 推广Bethe公式:Au50+离子的偶极激发的碰撞强度和速率系数. 物理学报, 1998, 47(10): 1612-1620. doi: 10.7498/aps.47.1612
    [16] 钱景仁. 小孔耦合的能量问题及等效激发场. 物理学报, 1975, 24(1): 61-71. doi: 10.7498/aps.24.61
    [17] 孙家锺, 蒋栋成, 施安顿, 周木易. 电子极化对氟化钙离子晶体的弹性系数、压电系数和介电常数的影响. 物理学报, 1965, 21(2): 402-413. doi: 10.7498/aps.21.402
    [18] 黄宏嘉, 范滇元. 变截面铁氧体柱中电磁波传播的耦合波理论. 物理学报, 1965, 21(9): 1653-1667. doi: 10.7498/aps.21.1653
    [19] 许政一, 冷忠昂, 李荫远. Bethe-Weiss方法在固溶体铁磁性统计理论中的应用. 物理学报, 1960, 16(5): 289-298. doi: 10.7498/aps.16.289
    [20] 林为干. 矩形波导与圆柱波导或圆柱谐振腔间的小孔耦合. 物理学报, 1959, 15(7): 368-376. doi: 10.7498/aps.15.368
计量
  • 文章访问数:  6968
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-22
  • 修回日期:  2019-02-26
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回