搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低光学衍射随机六元环金属网络导电膜

李子杨 杨霄 刘华松 姜玉刚 白金林 李士达 杨仕琪 苏建忠

引用本文:
Citation:

低光学衍射随机六元环金属网络导电膜

李子杨, 杨霄, 刘华松, 姜玉刚, 白金林, 李士达, 杨仕琪, 苏建忠

Low optical diffraction random hexagonal structure metallic network conductive films

Li Zi-Yang, Yang Xiao, Liu Hua-Song, Jiang Yu-Gang, Bai Jin-Lin, Li Shi-Da, Yang Shi-Qi, Su Jian-Zhong
PDF
HTML
导出引用
  • 传统金属网栅多为二维方格结构, 光学透射率损耗较大, 高级次衍射杂散光严重干扰探测系统成像质量. 本文设计了一种具有随机六元环表面结构的金属网络导电薄膜, 该结构相较于传统二维方格结构金属网栅具有更高的光学透射率; 由于在结构中引入了随机变量, 也可以实现高级次衍射杂散光的抑制. 随后在ZnS光学窗口上完成了线宽为4 μm、周期为100 μm的随机六元环结构金属网络导电膜的制备. 测试结果表明, 样品表面图案完整、金属线清晰可见、线宽均匀、无断线情况发生. ZnS光学窗口在长波红外波段透射率损失10.5%, 在可见光波段透射率仅损失6.8%, 同时可以显著均化高级次衍射杂散光分布. 电磁屏蔽数值仿真结果显示, 该网络导电膜在0.2—20 GHz电磁波谱段内平均电磁屏蔽效能为37.9 dB, 最低屏蔽效能29.6 dB, 比传统方格结构网栅高3.2 dB. 本文设计并制备的随机六元环结构金属网络导电膜具有优异的光学性能与电磁屏蔽效能, 对于提升图形化光学窗口的综合性能具有重大意义.
    Traditional metallic meshes are a two-dimensional square structure with high optical transmittance loss, and the diffraction of light seriously interferes with the imaging quality of the detection system. In this work a metallic network conductive film with a random hexagonal surface structure is designed. This structure has a higher optical transmittance than conventional square metallic meshes. As a result of the random variables in the structure, it can also suppress the stray light of high-order diffraction. Then we prepare a metallic network conductive film on a ZnS optical window with a line width of 4 μm and a period of 100 μm. The metal lines of the sample are clear, the line width is uniform, and there is no dotted line. The transmission loss of the ZnS optical window is 10.5% in the long-wave infrared band (LWIR) band but only 6.8% in the visible band, which has low energy loss. At the same time, it can achieve uniform optical diffraction, thus reducing the imaging interference to the photoelectric detection system. The numerical simulation results show that the average EMI shielding efficiency is 37.9db, which is in an electromagnetic spectrum range from 0.2 GHz to 20 GHz, and its minimum shielding efficiency is 29.6 dB, which is 3.2 dB higher than the traditional square mesh’s. The random hexagonal structure metallic network conductive films designed and prepared in this paper have excellent optical properties and EMI shielding efficiencies, which is of great significance in improving the comprehensive performance of the graphical optical window.
      通信作者: 刘华松, liuhuasong@hotmail.com ; 苏建忠, sujianzhong@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61975150, 61775167, 61705165)、天津市自然科学基金(批准号: 19JCZDJC38400, 18JCZDJC37900)、国家拔尖青年人才支持计划、天津市人才发展专项支持计划高层次创新团队、天津市创新人才推进计划重点领域创新团队.
      Corresponding author: Liu Hua-Song, liuhuasong@hotmail.com ; Su Jian-Zhong, sujianzhong@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975150, 61775167, 61705165), the Natural Science Foundation of Tianjin, China (Grant Nos.19JCZDJC38400, 18JCZDJC37900), the National Plans for the Top of the Notch Youth Talents, the High-Level Innovation Team of Tianjin Talent Development Special Plans, and the Key Area Innovation Team of Tianjin Innovation Talent Promotion Plans.
    [1]

    Han J C, Wang X N, Qiu Y F, Zhu J Q, Hu P A 2015 Carbon 87 206Google Scholar

    [2]

    Xu H, Anlage S M, Hu L B, Gruner G 2007 Appl. Phys. Lett. 90 183119Google Scholar

    [3]

    Mesfin H M, Baudouin A C, Hermans S, Delcorte A, Huynen I, Bailly C 2014 Appl. Phys. Lett. 105 103105Google Scholar

    [4]

    Polley D, Barman A, Mitra R K 2014 Opt. Lett. 39 1541Google Scholar

    [5]

    Hu M J, Gao J F, Dong Y C, Li K, Shan G C, Yang S L, Li R K 2012 Langmuir 28 7101Google Scholar

    [6]

    Huang J L, Yau B S, Chen C Y, Lo W T, Lii D F 2001 Ceram. Int. 27 363Google Scholar

    [7]

    Kim C H, Lee Y 2011 Int. J. Precis. Eng. Manuf. 12 161Google Scholar

    [8]

    Han Y, Liu Y X, Han L, Lin J, Jin P 2017 Carbon 115 34Google Scholar

    [9]

    Tan J B, Lu Z G 2007 Opt. Express 15 790Google Scholar

    [10]

    Lu Z G, Liu Y S, Wang H Y, Tan J B 2016 Appl. Opt. 55 5372Google Scholar

    [11]

    Kohin M, Wein S J, Traylor J D, Chase R C, Chapman J E 1993 Opt. Eng. 32 911Google Scholar

    [12]

    Jiang Z Y, Huang W B, Chen L S, Liu Y H 2019 Opt. Express 27 24194Google Scholar

    [13]

    Zhong H, Han Y, Lin J, Jin P 2020 Opt. Express 28 7008Google Scholar

    [14]

    梁圆龙, 黄贤俊, 姚理想, 程开, 刘培国 2021 安全与电磁兼容 2 61Google Scholar

    Liang Y L, Huang X J, Yao L X, Cheng K, Liu P G 2021 Safety & EMC 2 61Google Scholar

    [15]

    Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proceedings of SPIE - The International Society for Optical Engineering Orlando, USA, April 15-16, 2009 p73020 Y

    [16]

    Wang W Q, Bai B F, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [17]

    Han Y, Lin J, Liu Y X, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar

    [18]

    Ulrich R 1967 Infrared Phys. 7 37Google Scholar

    [19]

    冯晓国, 张舸, 汤洋 2015 光学精密工程 23 686Google Scholar

    Feng X G, Zhang G, Tang Y 2015 Opt. Precis. Eng. 23 686Google Scholar

    [20]

    Jiang Z Y, Zhao S Q, Chen L S, Liu Y H 2021 Opt. Express 29 18760Google Scholar

    [21]

    庄松林, 钱振邦 1981 光学传递函数(北京: 机械工业出版社) 第264页

    Zhuang S L, Qian Z B 1981 Optical Transfer Function (Beijing: China Machine Press) p264 (in Chinese)

    [22]

    陆振刚 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Lu Z G 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

  • 图 1  常见金属图形化表面结构阵列

    Fig. 1.  Common metallic graphical surface structure arrays.

    图 2  规则六边形结构与随机六元环结构构效关系 (a) 规则六边形结构; (b) 随机六元环结构; (c) 随机结构生成原理

    Fig. 2.  Conformational relationship: (a) Regular hexagonal structure; (b) random hexagonal structure; (c) random structure generation principle.

    图 3  金属网栅的不同表面结构所对应的衍射能量分布 (a)二维方格结构; (b)规则六边形结构; (c)随机六元环结构

    Fig. 3.  Distribution of diffracted intensity under different surface structures: (a) Two dimensional (2D) square structure; (b) regular hexagonal structure; (c) random hexagonal structure.

    图 4  二维方格结构、规则六边形结构与随机六元环结构三者电磁屏蔽效能对比

    Fig. 4.  Comparison of electromagnetic interference shielding effectiveness among 2D square structure, regular hexagonal structure and random hexagonal structure.

    图 5  金属网络导电膜微观结构 (a) 100 X金相显微探测结果; (b) 200 X金相显微探测结果

    Fig. 5.  Random hexagonal surface microstructure: (a) 100 X metallographic probing result; (b) 200 X metallographic probing results.

    图 6  透射率测试结果 (a) 400—800 nm可见光波段透射率; (b) 8—12 μm长波红外波段透射率

    Fig. 6.  Transmittance test results: (a) Transmittance in the 400–800 nm visible band; (b) transmittance in the 8–12 μm long-wave infrared band.

    图 7  随机六元环结构金属网络导电膜衍射光强分布测试结果

    Fig. 7.  Regular hexagonal structure diffraction intensity distribution test results.

  • [1]

    Han J C, Wang X N, Qiu Y F, Zhu J Q, Hu P A 2015 Carbon 87 206Google Scholar

    [2]

    Xu H, Anlage S M, Hu L B, Gruner G 2007 Appl. Phys. Lett. 90 183119Google Scholar

    [3]

    Mesfin H M, Baudouin A C, Hermans S, Delcorte A, Huynen I, Bailly C 2014 Appl. Phys. Lett. 105 103105Google Scholar

    [4]

    Polley D, Barman A, Mitra R K 2014 Opt. Lett. 39 1541Google Scholar

    [5]

    Hu M J, Gao J F, Dong Y C, Li K, Shan G C, Yang S L, Li R K 2012 Langmuir 28 7101Google Scholar

    [6]

    Huang J L, Yau B S, Chen C Y, Lo W T, Lii D F 2001 Ceram. Int. 27 363Google Scholar

    [7]

    Kim C H, Lee Y 2011 Int. J. Precis. Eng. Manuf. 12 161Google Scholar

    [8]

    Han Y, Liu Y X, Han L, Lin J, Jin P 2017 Carbon 115 34Google Scholar

    [9]

    Tan J B, Lu Z G 2007 Opt. Express 15 790Google Scholar

    [10]

    Lu Z G, Liu Y S, Wang H Y, Tan J B 2016 Appl. Opt. 55 5372Google Scholar

    [11]

    Kohin M, Wein S J, Traylor J D, Chase R C, Chapman J E 1993 Opt. Eng. 32 911Google Scholar

    [12]

    Jiang Z Y, Huang W B, Chen L S, Liu Y H 2019 Opt. Express 27 24194Google Scholar

    [13]

    Zhong H, Han Y, Lin J, Jin P 2020 Opt. Express 28 7008Google Scholar

    [14]

    梁圆龙, 黄贤俊, 姚理想, 程开, 刘培国 2021 安全与电磁兼容 2 61Google Scholar

    Liang Y L, Huang X J, Yao L X, Cheng K, Liu P G 2021 Safety & EMC 2 61Google Scholar

    [15]

    Halman J I, Ramsey K A, Thomas M, Griffin A 2009 Proceedings of SPIE - The International Society for Optical Engineering Orlando, USA, April 15-16, 2009 p73020 Y

    [16]

    Wang W Q, Bai B F, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [17]

    Han Y, Lin J, Liu Y X, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar

    [18]

    Ulrich R 1967 Infrared Phys. 7 37Google Scholar

    [19]

    冯晓国, 张舸, 汤洋 2015 光学精密工程 23 686Google Scholar

    Feng X G, Zhang G, Tang Y 2015 Opt. Precis. Eng. 23 686Google Scholar

    [20]

    Jiang Z Y, Zhao S Q, Chen L S, Liu Y H 2021 Opt. Express 29 18760Google Scholar

    [21]

    庄松林, 钱振邦 1981 光学传递函数(北京: 机械工业出版社) 第264页

    Zhuang S L, Qian Z B 1981 Optical Transfer Function (Beijing: China Machine Press) p264 (in Chinese)

    [22]

    陆振刚 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Lu Z G 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240339
    [2] 廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起. 基于裂纹模板法的金属网格透明导电薄膜制备及性能改进. 物理学报, 2022, 71(15): 154201. doi: 10.7498/aps.71.20220101
    [3] 梁殿明, 王超, 史浩东, 刘壮, 付强, 张肃, 战俊彤, 余益欣, 李英超, 姜会林. 基于Zernike模型系数优化的椭球型窗口光学系统像差校正. 物理学报, 2020, 69(24): 244203. doi: 10.7498/aps.69.20200933
    [4] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [5] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Müller, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌. 低能电子在外层导电屏蔽的玻璃锥管中的传输. 物理学报, 2017, 66(12): 124101. doi: 10.7498/aps.66.124101
    [6] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [7] 邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平. 透射衍射光栅内全反射级次. 物理学报, 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [8] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [9] 任丹, 杜平安, 聂宝林, 曹钟, 刘文奎. 一种考虑小孔尺寸效应的孔阵等效建模方法. 物理学报, 2014, 63(12): 120701. doi: 10.7498/aps.63.120701
    [10] 焦重庆, 李月月. 开孔矩形腔体电磁泄漏特性的解析研究. 物理学报, 2014, 63(21): 214103. doi: 10.7498/aps.63.214103
    [11] 唐华杰, 张晋敏, 金浩, 邵飞, 胡维前, 谢泉. 溅射功率对金属锰膜光学性质的影响. 物理学报, 2013, 62(24): 247803. doi: 10.7498/aps.62.247803
    [12] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [14] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [15] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [16] 张维佳, 王天民, 崔 敏, 戎霭伦. 有ITO透明导电膜的平面分层介质系统的电磁波性能理论研究. 物理学报, 2006, 55(3): 1295-1300. doi: 10.7498/aps.55.1295
    [17] 刘敏敏, 张国平, 邹 明. 二元矩形金属光栅衍射增强电磁理论. 物理学报, 2006, 55(9): 4608-4612. doi: 10.7498/aps.55.4608
    [18] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [19] 李 鹏, 刘顺华, 陈光昀. 二次渗滤现象对镍基导电硅橡胶屏蔽性能的影响. 物理学报, 2005, 54(7): 3332-3336. doi: 10.7498/aps.54.3332
    [20] 邵建达, 易葵, 范正修, 王润文, 崔明启. 短波长软X射线多层膜高级次峰设计与制备. 物理学报, 1997, 46(11): 2258-2266. doi: 10.7498/aps.46.2258
计量
  • 文章访问数:  2921
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-03-06
  • 上网日期:  2022-06-19
  • 刊出日期:  2022-07-05

/

返回文章
返回