搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于BLT方程的孔缝箱体屏蔽效能计算方法

罗静雯 杜平安 任丹 聂宝林

引用本文:
Citation:

一种基于BLT方程的孔缝箱体屏蔽效能计算方法

罗静雯, 杜平安, 任丹, 聂宝林

A BLT equation-based approach for calculating the shielding effectiveness of enclosures with apertures

Luo Jing-Wen, Du Ping-An, Ren Dan, Nie Bao-Lin
PDF
导出引用
  • 本文基于等效电路法, 提出一种通过BLT方程计算带孔缝箱体屏蔽效能的方法, 可以快速准确计算任意入射、极化平面波照射箱体以及任意位置开孔和双面开孔箱体的屏蔽效能. 根据等效电路法求解出孔缝散射矩阵, 依据信号流图建立传播关系和散射关系方程, 并推导出包含孔缝耦合效应的广义BLT方程. 将BLT方程计算结果与等效电路法计算结果以及CST仿真做对比, 验证了方法的正确性. 与等效电路法相比, 在同一孔阻抗下, 孔缝散射矩阵包含箱体内外能量之间的相互耦合作用, 本方法计算结果精度更高, 能预测更多箱体谐振模式; 与CST仿真相比, 本方法占用时间和资源少, 可以对箱体参数进行规律性研究.
    A calculation method based on BLT equation is proposed for analyzing the shielding effectiveness of enclosures containing apertures. This method can accurately and quickly obtain the shielding effectiveness of oblique incidence and polarization, off-centered apertures, and multi-apertures in two walls of enclosures. Aperture scattering matrix can be obtained according to equivalent circuit theory. Then, propagation relationships and reflection relationships are established, and finally the general BLT equation is derived, including the coupling to apertures. In order to verify the validity, the results are compared with these from equivalent circuit theory and CST. With the same aperture impedance, the aperture scattering matrix contains the interaction of the electromagnetic field so that the method proposed in this paper owns higher precision and can predict more resonant modes compared with the equivalent circuit theory. This method takes less time and computer resource compared with CST which cannot easily get the influence of enclosure parameters.
    • 基金项目: 国家自然科学基金(批准号: 51175068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51175068).
    [1]

    Yenikaya S 2011 Iranian Journal of Electrical and Computer Engineering. 10 70

    [2]

    Chen J, Wang J G 2007 IEEE Transactions on Electromagnetic Compatibility 49 354

    [3]

    Zhou G Q 2011 Chin. Phys. B 20 074203

    [4]

    Martin T, Backstrom M, Loren J 2003 IEEE Transactions on Electromagnetic Compatibility 45 229

    [5]

    Niu S, Jiao C Q, Li L 2013 Acta Phys. Sin. 62 214102 (in Chinese) [牛帅, 焦重庆, 李琳 2013 物理学报 62 214102]

    [6]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Transactions on Electromagnetic Compatibility 52 566

    [7]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 114102 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 114102]

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Jiao C Q, Niu S 2013 Acta Phys. Sin 62 134104 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 134104]

    [10]

    Robinson M P, Benson T M, Christopoulos C 1998 IEEE Trans on Electromagne Compat. 40 240

    [11]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 [王建国, 刘国治, 周金山. 2003 强激光与粒子束 15 1093]

    [12]

    Kang W J, Lee V O, Mun S K, Chung Y S, Cheon C Y 2010 IEEE Antennas and Propagation Society International Symposium. July 11-17 2010 p1-4

    [13]

    Tesche F M 2007 IEEE Trans on Electromagn Compat. 49 427

    [14]

    Baum C E 2005 Electromagnetics 25 623

    [15]

    Xie H Y, Wang J G, Fan R Y, Liu Y N 2011 IEEE Trans on Electromagnetic Compatibility 53 185

    [16]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 02 234 [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 02 234]

    [17]

    Tesche F M, Butler C M 2003 Interaction Notes 588

    [18]

    Azaro R, Caorsi S, Donelli, M, Gragnani, G L 2002 Microwave Theory and Techniques, IEEE Transactions 50 2259

    [19]

    Shi D, Shen Y M, Ruan F M, Wei Z G, Gao Y G 2008 IEEE International Symposium on. Aug. 18-22 2008 p1-5

    [20]

    Mao X Y, Du P A 2010 Science China Technological Sciences 07 1993

    [21]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Transactions 50 208

  • [1]

    Yenikaya S 2011 Iranian Journal of Electrical and Computer Engineering. 10 70

    [2]

    Chen J, Wang J G 2007 IEEE Transactions on Electromagnetic Compatibility 49 354

    [3]

    Zhou G Q 2011 Chin. Phys. B 20 074203

    [4]

    Martin T, Backstrom M, Loren J 2003 IEEE Transactions on Electromagnetic Compatibility 45 229

    [5]

    Niu S, Jiao C Q, Li L 2013 Acta Phys. Sin. 62 214102 (in Chinese) [牛帅, 焦重庆, 李琳 2013 物理学报 62 214102]

    [6]

    Shim J, Kam D G, Kwon J H, Kim J 2010 IEEE Transactions on Electromagnetic Compatibility 52 566

    [7]

    Jiao C Q, Qi L 2012 Acta Phys. Sin. 61 114102 (in Chinese) [焦重庆, 齐磊 2012 物理学报 61 114102]

    [8]

    Bethe H A 1944 Phys. Rev. 66 163

    [9]

    Jiao C Q, Niu S 2013 Acta Phys. Sin 62 134104 (in Chinese) [焦重庆, 牛帅 2013 物理学报 62 134104]

    [10]

    Robinson M P, Benson T M, Christopoulos C 1998 IEEE Trans on Electromagne Compat. 40 240

    [11]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 [王建国, 刘国治, 周金山. 2003 强激光与粒子束 15 1093]

    [12]

    Kang W J, Lee V O, Mun S K, Chung Y S, Cheon C Y 2010 IEEE Antennas and Propagation Society International Symposium. July 11-17 2010 p1-4

    [13]

    Tesche F M 2007 IEEE Trans on Electromagn Compat. 49 427

    [14]

    Baum C E 2005 Electromagnetics 25 623

    [15]

    Xie H Y, Wang J G, Fan R Y, Liu Y N 2011 IEEE Trans on Electromagnetic Compatibility 53 185

    [16]

    Zhang Y P, Da X Y, Xie T C 2014 High Power Laser and Particle Beams 02 234 [张亚普, 达新宇, 谢铁城 2014 强激光与粒子束 02 234]

    [17]

    Tesche F M, Butler C M 2003 Interaction Notes 588

    [18]

    Azaro R, Caorsi S, Donelli, M, Gragnani, G L 2002 Microwave Theory and Techniques, IEEE Transactions 50 2259

    [19]

    Shi D, Shen Y M, Ruan F M, Wei Z G, Gao Y G 2008 IEEE International Symposium on. Aug. 18-22 2008 p1-5

    [20]

    Mao X Y, Du P A 2010 Science China Technological Sciences 07 1993

    [21]

    Dehkhoda P, Tavakoli A, Moini R 2008 IEEE Transactions 50 208

  • [1] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [2] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [3] 白婉欣, 李天乐, 郭安琪, 成睿琦, 焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报, 2019, 68(10): 104101. doi: 10.7498/aps.68.20182070
    [4] 廖意, 蔡昆, 张元, 王晓冰. 高浓度纤维增强材料介电特性计算方法. 物理学报, 2016, 65(2): 024102. doi: 10.7498/aps.65.024102
    [5] 郝建红, 公延飞, 范杰清, 蒋璐行. 一种内置条状金属板的双层金属腔体屏蔽效能的理论模型. 物理学报, 2016, 65(4): 044101. doi: 10.7498/aps.65.044101
    [6] 阚勇, 闫丽萍, 赵翔, 周海京, 刘强, 黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报, 2016, 65(3): 030702. doi: 10.7498/aps.65.030702
    [7] 张新国, 孙洪涛, 赵金兰, 刘冀钊, 马义德, 韩廷武. 蔡氏电路的功能全同电路与拓扑等效电路及其设计方法. 物理学报, 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [8] 张亚普, 达新宇, 祝杨坤, 赵蒙. 电大开孔箱体屏蔽效能分析解析模型. 物理学报, 2014, 63(23): 234101. doi: 10.7498/aps.63.234101
    [9] 范杰清, 郝建红, 柒培华. 内部窗口结构对开孔矩形腔体近场屏蔽效能的影响. 物理学报, 2014, 63(1): 014104. doi: 10.7498/aps.63.014104
    [10] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [11] 胡丰伟, 包伯成, 武花干, 王春丽. 荷控忆阻器等效电路分析模型及其电路特性研究. 物理学报, 2013, 62(21): 218401. doi: 10.7498/aps.62.218401
    [12] 焦重庆, 牛帅. 开孔矩形腔体的近场电磁屏蔽效能研究. 物理学报, 2013, 62(11): 114102. doi: 10.7498/aps.62.114102
    [13] 牛帅, 焦重庆, 李琳. 中等导电性材料覆盖的金属腔体的电磁屏蔽效能研究. 物理学报, 2013, 62(21): 214102. doi: 10.7498/aps.62.214102
    [14] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [15] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [16] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [17] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, 2005, 54(3): 1361-1365. doi: 10.7498/aps.54.1361
    [18] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, 2000, 49(9): 1696-1701. doi: 10.7498/aps.49.1696
    [19] 胡佩康. 含有铁氧体圆杆的矩形波导的散射矩阵及其等效线路. 物理学报, 1966, 22(9): 1069-1076. doi: 10.7498/aps.22.1069
    [20] 林为干. 矩形波导一个不连续性的等效电路. 物理学报, 1956, 12(5): 459-476. doi: 10.7498/aps.12.459
计量
  • 文章访问数:  5698
  • PDF下载量:  404
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-17
  • 修回日期:  2014-08-20
  • 刊出日期:  2015-01-05

/

返回文章
返回