搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带双层开孔外筒的圆筒结构的水动力特性研究

刘俊 林皋 李建波

引用本文:
Citation:

带双层开孔外筒的圆筒结构的水动力特性研究

刘俊, 林皋, 李建波

A Study of the hydrodynamic behavior of cylindrical structure with double porous outer shelters

Liu Jun, Lin Gao, Li Jian-Bo
PDF
导出引用
  • 本文采用比例边界有限元方法(SBFEM), 获得了三维短峰波对带双层开孔外筒的圆筒新型结构水动力相互作用的半解析解. SBFEM综合了有限元(FEM)和边界元(BEM)法的优点, 使问题降阶一维, 而又不需要基本解, 不出现奇异性问题, 自动满足无穷远边界条件. SBFEM将整个计算域分成两个有限子域和一个无限子域, 利用变分原理推导出各个子域波浪速度势沿径向变化所应满足的二阶常微分方程组(SBFEM控制方程), 针对有限子域和无限子域分别采用贝塞尔函数和汉克尔函数作为基函数进行解析求解. 数值算例表明, 本文所推荐的方法只需对最外筒边界进行离散, 采用少数节点便能得到高度精确的结果. 与单层开孔圆筒结构波动场的比较, 发现双层开孔结构对降低内筒所受波浪力效果更好. 进一步分析了短峰波的波浪参数、结构的形状参数及材料参数对整个结构所受波浪荷载及计算域波浪爬升的影响, 这为带双层开孔外筒的圆筒结构的水动力分析和结构设计提供了有价值的参考.
    Porous structure can effectively reduce the loads caused by the water wave, which results in lowering the cost of engineering project. The double porous shelter performs even better. Therefore, it receives much attention from researches. However, most of the previous studies dealing with the analysis of the interaction between water wave are porous structure were based on two-dimensional plane wave assumption. This can hardly reflect the real phenomena of complex wave action. In this paper, a semi-analytical solution to the hydrodynamic interaction between the three-dimensional short-crested wave and the cylindrical structure with double porous shelters is performed by employing the scaled boundary finite element method (SBFEM). The SBFEM possesses the advantages of finite element method (FEM) and boundary element method (BEM): the spatial dimension of the problem is reduced by one, no fundamental solution is needed and no singularity occurs. Meanwhile, this method can meet the infinity of the boundary condition automatically. In the SBFEM, the total computational domain is divided into three sub-domains, two ring-shaped finite sub-domains and one outer infinite sub-domain. A variational principle approach is proposed to establish the SBFE governing equations, which describe the variation of the velocity potential of wave motion in the radial direction. Bessel functions and Hankel functions are chosen as the basis functions for the solution of bounded and unbounded sub-domain problems, respectively. Numerical examples show that the proposed approach achieves very high accuracy and converges rapidly with quite few discretized nodes at the outer boundary. In comparison with the cylindrical structure with single porous shelter, the former performs better for the reduction of the water wave force. In addition, The influences of the wave parameters and the configuration of the structure on the system hydrodynamics, including the wave force, wave and diffracted wave contour are extensively examined. This research provides a valuable insight into the hydrodynamic analysis of cylindrical structure with double porous shelters and their structural design.
    • 基金项目: 国家自然科学基金重点项目(批准号: 51138001), 中德合作研究项目(批准号: GZ566)和清华大学水沙科学国家重点实验室开放基金(批准号: shlhse-2010-C-03)资助的课题.
    • Funds: Project supported by the State Key Program of National Natural Science of China (51138001), the China-Germany Joint Research Project (GZ566), and the Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering (shlhse-2010-C-03).
    [1]

    Jarlan G E 1961 Dock and Harbour Authority 486 394

    [2]

    Huang Z H, Li Y, Liu Y 2011 Ocean Engineering 10 1031

    [3]

    Chwang A T, Chan A T 1998 Annual Review of Fluid Mechanics 30 53

    [4]

    Ojima R, Owaki T, Yamagata N, Komoto Y 1994 Proceedings of International conference on Hydro-Technical engineering for port and harbour construction Yokosuka Japan, October 19---21 1994 p 691

    [5]

    Wang K H, Ren X. 1994 Ocean Engineering 21 343

    [6]

    Zhu D T 2011 Chinese Ocean Engineering 25 201

    [7]

    Darwiche M K M, Williams A N, Wang K H 1994 Journal of Waterway, Port, Coastal and Ocean Engineering 120 382

    [8]

    Williams A N, Li W 1998 Ocean Engineering 25 195

    [9]

    Williams A N, Li W, Wang K H 2000 Ocean Engineering 27 1

    [10]

    Teng B,Han L, Li Y C. 2000 Chinese Ocean Engineering 14(3) 297

    [11]

    Teng B, Han L, Li Y C 2001 Ocean Engineering 19 32 (in Chinese) [滕斌, 韩凌,李 玉成 2001 海洋工程 19 32]

    [12]

    Teng B, Zhao M, Li Y C 2001 Acta Oceanologica Sinica 23 133 (in Chinese) [滕斌, 赵明, 李玉成 2001 海洋工程 23 133]

    [13]

    Williams A N, Li W 2000 Ocean Engineering 27 841

    [14]

    Sun L 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [孙路 2005 博士学位论文 (大连: 大连理工大学)]

    [15]

    Vijayalakshmi K, Neelamani S, Sundaravadivelu R 2007 Ocean Engineering 34 327

    [16]

    Sankarbabu K, Sannasiraj S A, Sundar V 2008 Ocean Engineering 55 431

    [17]

    Zhong Z, Wang K H 2008 Ocean Engineering 33 927

    [18]

    Li Y C, Liu H J, Teng B 2005 Ocean Engineering 1 18 (in Chinese)[李玉成,刘洪杰,滕斌. 2005 海洋工程 1 18]

    [19]

    Sawaragi T, Iwata K 1978 Coastal Engineering in Japan 21 63

    [20]

    Kondo H Proceedings of Coastal Structures '79 ASCE, Virginia, March 14---16 1979 p962

    [21]

    Wang H, Shen L Y, Wang Y 2011 Port & Waterway Engineering 2 (in Chinese) [汪宏, 沈丽玉, 王勇 2011 水运工程 2 21]

    [22]

    Liu Y, · Li Y C, Teng B 2011 Journal of Engineering Mathematics DOI 10.1007/s10665-011-9484-2

    [23]

    Tsai C P, Jeng D S, Hsu J R C 1994 Applied Ocean Research 6 317

    [24]

    Deng Z G, Huang H 2010 Acta Physica Sinica 59 735 (in Chinese) [邓争光, 黄虎 2010 物理学报 59 735]

    [25]

    Huang H, Yang L, Xia Y B 2010 Acta Physica Sinica 59 2182 (in Chinese) [黄虎, 杨丽, 夏应波 2010 物理学报 59 2182]

    [26]

    Huang H, Xia Y B 2010 Acta Physica Sinica 59 3663 (in Chinese) [黄虎, 夏应波 2010 物理学报 59 3663]

    [27]

    Huang H 2011 Acta Physica Sinica 60 074701 (in Chinese) [黄虎 2011 物理学报 60 074701]

    [28]

    Wolf J P, Song C M 1996 International Journal for Numerical Methods in Engineering 13 2189

    [29]

    Lin G, Liu J, Li J B 2011 IET Microwaves, Antennas& Propagation 12 1508

    [30]

    Tao L B, Song H 2009 Journal of Waterway, Port, Coastal and Ocean Engineering 5 200

  • [1]

    Jarlan G E 1961 Dock and Harbour Authority 486 394

    [2]

    Huang Z H, Li Y, Liu Y 2011 Ocean Engineering 10 1031

    [3]

    Chwang A T, Chan A T 1998 Annual Review of Fluid Mechanics 30 53

    [4]

    Ojima R, Owaki T, Yamagata N, Komoto Y 1994 Proceedings of International conference on Hydro-Technical engineering for port and harbour construction Yokosuka Japan, October 19---21 1994 p 691

    [5]

    Wang K H, Ren X. 1994 Ocean Engineering 21 343

    [6]

    Zhu D T 2011 Chinese Ocean Engineering 25 201

    [7]

    Darwiche M K M, Williams A N, Wang K H 1994 Journal of Waterway, Port, Coastal and Ocean Engineering 120 382

    [8]

    Williams A N, Li W 1998 Ocean Engineering 25 195

    [9]

    Williams A N, Li W, Wang K H 2000 Ocean Engineering 27 1

    [10]

    Teng B,Han L, Li Y C. 2000 Chinese Ocean Engineering 14(3) 297

    [11]

    Teng B, Han L, Li Y C 2001 Ocean Engineering 19 32 (in Chinese) [滕斌, 韩凌,李 玉成 2001 海洋工程 19 32]

    [12]

    Teng B, Zhao M, Li Y C 2001 Acta Oceanologica Sinica 23 133 (in Chinese) [滕斌, 赵明, 李玉成 2001 海洋工程 23 133]

    [13]

    Williams A N, Li W 2000 Ocean Engineering 27 841

    [14]

    Sun L 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [孙路 2005 博士学位论文 (大连: 大连理工大学)]

    [15]

    Vijayalakshmi K, Neelamani S, Sundaravadivelu R 2007 Ocean Engineering 34 327

    [16]

    Sankarbabu K, Sannasiraj S A, Sundar V 2008 Ocean Engineering 55 431

    [17]

    Zhong Z, Wang K H 2008 Ocean Engineering 33 927

    [18]

    Li Y C, Liu H J, Teng B 2005 Ocean Engineering 1 18 (in Chinese)[李玉成,刘洪杰,滕斌. 2005 海洋工程 1 18]

    [19]

    Sawaragi T, Iwata K 1978 Coastal Engineering in Japan 21 63

    [20]

    Kondo H Proceedings of Coastal Structures '79 ASCE, Virginia, March 14---16 1979 p962

    [21]

    Wang H, Shen L Y, Wang Y 2011 Port & Waterway Engineering 2 (in Chinese) [汪宏, 沈丽玉, 王勇 2011 水运工程 2 21]

    [22]

    Liu Y, · Li Y C, Teng B 2011 Journal of Engineering Mathematics DOI 10.1007/s10665-011-9484-2

    [23]

    Tsai C P, Jeng D S, Hsu J R C 1994 Applied Ocean Research 6 317

    [24]

    Deng Z G, Huang H 2010 Acta Physica Sinica 59 735 (in Chinese) [邓争光, 黄虎 2010 物理学报 59 735]

    [25]

    Huang H, Yang L, Xia Y B 2010 Acta Physica Sinica 59 2182 (in Chinese) [黄虎, 杨丽, 夏应波 2010 物理学报 59 2182]

    [26]

    Huang H, Xia Y B 2010 Acta Physica Sinica 59 3663 (in Chinese) [黄虎, 夏应波 2010 物理学报 59 3663]

    [27]

    Huang H 2011 Acta Physica Sinica 60 074701 (in Chinese) [黄虎 2011 物理学报 60 074701]

    [28]

    Wolf J P, Song C M 1996 International Journal for Numerical Methods in Engineering 13 2189

    [29]

    Lin G, Liu J, Li J B 2011 IET Microwaves, Antennas& Propagation 12 1508

    [30]

    Tao L B, Song H 2009 Journal of Waterway, Port, Coastal and Ocean Engineering 5 200

  • [1] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [2] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [3] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法. 物理学报, 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [4] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [5] 文锋, 王建华. 二维均匀流与重力短峰波相互作用解析. 物理学报, 2014, 63(9): 094701. doi: 10.7498/aps.63.094701
    [6] 徐润汶, 郭立新, 范天奇. 有限元/边界积分方法在海面及其上方弹体目标电磁散射中的应用. 物理学报, 2013, 62(17): 170301. doi: 10.7498/aps.62.170301
    [7] 焦重庆, 齐磊. 平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究. 物理学报, 2012, 61(13): 134104. doi: 10.7498/aps.61.134104
    [8] 黄虎. 直立堤前部分反射短峰波演变的三个无穷序列. 物理学报, 2011, 60(7): 074701. doi: 10.7498/aps.60.074701
    [9] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [10] 黄虎, 杨丽, 夏应波. 一般反射短峰波的普适法则——倍频率通向短峰波. 物理学报, 2010, 59(4): 2182-2186. doi: 10.7498/aps.59.2182
    [11] 邓争志, 黄虎. 表面张力-重力短峰波作用的海底边界层速度二阶解. 物理学报, 2010, 59(2): 735-739. doi: 10.7498/aps.59.735
    [12] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [13] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 黄虎. 经典三阶驻波、短峰波的有效匹配解. 物理学报, 2009, 58(10): 6761-6763. doi: 10.7498/aps.58.6761
    [16] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [17] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析. 物理学报, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [19] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  7468
  • PDF下载量:  722
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-02
  • 修回日期:  2011-11-03
  • 刊出日期:  2012-06-05

/

返回文章
返回