搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SeH+离子低激发态的电子结构和跃迁性质的理论研究

滑亚文 刘以良 万明杰

引用本文:
Citation:

SeH+离子低激发态的电子结构和跃迁性质的理论研究

滑亚文, 刘以良, 万明杰

Theoretical study on electronic structure and transition properties of excited states for SeH+ anion

Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie
PDF
HTML
导出引用
  • 采用内收敛多组态相互作用及Davidson修正方法精确地计算了SeH+离子能量最低的3个离解极限对应的12个Λ—S态的势能曲线. 计算中考虑了芯-价电子关联、标量相对论修正和自旋-轨道耦合效应. 结果表明在30000—40000 cm–1处Ω态的曲线存在许多避免交叉, 导致a2, b0+, A12, A21, A30, A40+和c1态变为了双势阱. 通过求解径向薛定谔方程得到了12个Λ—S态和9个Ω态的光谱常数. 基于势能曲线和跃迁偶极矩, 预测出了$ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$$ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$跃迁的弗兰克-康登因子、辐射速率和辐射寿命. 首次系统地报道了SeH+离子的光谱与跃迁性质.
    Potential energy curves of dipole moments for 12 electronic states correlating with the Se+(4Su) + H(2Sg), Se+(2Du) + H(2Sg) and Se+(2Pu) + H(2Sg) dissociation channels of SeH+ anion are calculated by the ic-MRCI + Q method. The AV5Z-DK basis set for Se atom and H atom are chosen. Scalar relativistic effect, core-valence correction, and spin-orbit coupling effect are also taken into account. In MRCI calculations, Se(1s2s) orbitals are frozen, H(1s) and Se(4s4p) orbitals are selected as active space, and the remaining orbitals are used for the core-valence correlation.Spectroscopic parameters of 12 Λ–S states and 9 low-lying Ω states are obtained. All Λ–S states we selected are bound states. The X3Σ, a1Δ, b1Σ+, A3Π and c1Π states each possess a large well, but the others each have a shallow well. The a1Δ, b1Σ+, A3Π, c1Π and 15Σ states cross in 30000–40000 cm–1 regions. The X3Σ, a1Δ and b1Σ+ come from the 4π2 electronic configuration around the equilibrium region, and three states have similar values of Re. The splitting dissociation channels are obtained at a spin-orbital coupling level. The calculated energy differences among five dissociation channels are in excellent agreement with the experimental data, and the maximal error is smaller than 0.5%. Due to the avoided crossing between the low-lying Ω states, the a2, b0+, A12, A21, A30, A40+ and c1 states all have two wells. The splitting parameters ASO of the X3Σ state and the A3Π state are predicted at the same time, i. e. ASO(X21 – X10+) = 252.4 cm–1, ASO(A21 – A12) = 858.9 cm–1, ASO(A30 – A21) = 1213.5 cm–1 and ASO(A40+ – A30) = 199.5 cm–1. The transition dipole moments of the A3Π $ \leftrightarrow $ X3Σ and A21 $ \leftrightarrow $ X10+ transitions are obtained. The oscillator strengths, Franck-Condon factors, and radiative lifetimes of these two transitions are also predicted. The radiative lifetime of A3Π state and A21 state are 746.6 and 787.8 ns, respectively. It implies the ability of electron transition for these two transitions.
      通信作者: 滑亚文, yawen0215@163.com
    • 基金项目: 其它-中央高校基本科研业务费专项资金项目(项目编号: 2019NYB07)
      Corresponding author: Hua Ya-Wen, yawen0215@163.com
    [1]

    Ram R S, Bernath P F 2000 J. Mol. Spectrosc. 203 9Google Scholar

    [2]

    Lindgren B 1968 J. Mol. Spectrosc. 28 536Google Scholar

    [3]

    Davies P B, Handy B J, Lloyd E K M, Russell D K 1978 J. Chem. Phys. 68 3377Google Scholar

    [4]

    Brown J M, Carrington A, Sears T J 1979 Mol. Phys. 37 1837Google Scholar

    [5]

    Cliff D I, Davies P B, Handy J J, Thrush B A 1980 Chem. Phys. Lett. 75 9Google Scholar

    [6]

    Bollmark, Lindgren B, Sassenberg U 1980 Phys. Scr. 21 811Google Scholar

    [7]

    Brown J M, Fackerell A D 1982 Phys. Scr. 25 351Google Scholar

    [8]

    Ashworth S H, Brown J M 1991 Chem. Phys. Lett. 182 73Google Scholar

    [9]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551Google Scholar

    [10]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standards Publications) pp2, 153

    [11]

    Binning J R C, Curtiss L A 1990 J. Chem. Phys. 92 3688Google Scholar

    [12]

    Guberman S L 1995 J. Chem. Phys. 102 1699Google Scholar

    [13]

    Khadri F, Ndome H, Lahmar S, Lakhdar Z B, Hochlaf M 2006 J. Mol. Spectrosc. 237 232Google Scholar

    [14]

    Santos L G dos, Oliveira A G S de, Ornellas F R 2015 J. Chem. Phys. 142 024316Google Scholar

    [15]

    Song Y Z, Zhang L L, Gao S B, Meng Q T 2016 Sci. Rep. 6 37734Google Scholar

    [16]

    Zhang L L, Gao S B, Meng Q T, Pan J, Song Y Z 2018 J. Chem. Phys. 149 154303Google Scholar

    [17]

    施德恒, 刘慧, 孙金锋, 朱遵略, 刘玉芳 2010 物理学报 59 227Google Scholar

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2010 Acta Phys. Sin. 59 227Google Scholar

    [18]

    赵书涛, 梁桂颖, 李瑞等 2017 物理学报 66 063103Google Scholar

    Zhao S T, Liang G Y, Li R, et al. 2017 Acta Phys. Sin. 66 063103Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010)

    [20]

    Knowles P J Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [21]

    Knowles P J Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [22]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [23]

    Knowles P J Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [24]

    Dunning T H Jr 1989 J. Chem. Phys. 90 1007Google Scholar

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H Jr 1999 J. Chem. Phys. 110 7667Google Scholar

    [26]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [27]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [29]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [30]

    Stollenwerk P R, Kokish M G, Antonio G. S. Oliveira-Filho de A G S, Ornellas F R, Odom B C 2018 Atoms 6 53Google Scholar

    [31]

    Kjaergaard H G, Yu H, Schattka B J, Henry B R, Tarr A W 1990 J. Chem. Phys. 93 6239Google Scholar

  • 图 1  SeH+离子的12个Λ—S态的势能曲线

    Fig. 1.  Potential energy curves of the Λ-S states of SeH+.

    图 2  SeH+离子的9个Ω态的势能曲线

    Fig. 2.  Potential energy curves of nine Ω states of SeH+.

    图 3  SeH+离子的偶极矩和跃迁偶极矩跃迁偶极矩 (a) 自旋无关水平下; (b) SOC水平下

    Fig. 3.  Dipole moments and transition dipole moments of SeH+: (a) At spin-free level; (b) at SOC level.

    表 1  SeH+离子Λ—S态的离解关系

    Table 1.  Dissociation relationships of Λ-S states of SeH+.

    原子态Λ–S态相对能量/cm–1
    本文工作a
    Se+(4Su) + H(2Sg)3, 5Σ0
    Se+(2Du) + H(2Sg)1, 3Σ, 1, 3Π, 1, 3Δ13590.3
    Se+(2Pu) + H(2Sg)1, 3Σ+, 1, 3Π22896.5
    a同一离解极限对应的所有电子态的平均能量.
    下载: 导出CSV

    表 2  SeH+离子Λ—S态的光谱常数

    Table 2.  Spectroscopic constants of the Λ–S states of SeH+.

    电子态Reωe/cm–1ωeχe/cm–1Be/cm–1De/eVTe/cm–1
    X3Σ1.46592387.4845.817.88163.3690
    1.474[11]
    a1Δ1.46422393.5240.797.89993.9209179.3
    b1Σ+1.46222406.6840.397.92244.00617761.9
    15Σ3.5894152.1725.851.33400.03026930.2
    A3Π1.63951505.5257.166.29611.20730953.8
    c1Π1.8168989.9559.145.14880.51536530.2
    B3Σ2.8262490.0847.962.14600.15739522.1
    11Σ3.6892162.9819.181.21090.04240461.9
    13Δ3.5593139.9420.441.29640.03040552.3
    23Π2.6009603.1550.662.52530.22348259.6
    21Π2.7701400.9243.542.22910.11649124.6
    13Σ+3.6000151.4125.731.32580.02949835.4
    下载: 导出CSV

    表 3  第Ⅵ主簇氢化物正离子低电子态的光谱常数

    Table 3.  Spectroscopic constants of the low-lying states for the Ⅵ hydride cations.

    离子文献电子态Reωe /cm–1ωeχe /cm–1Be /cm–1De /eVTe /cm–1
    SH+[13]X3Σ1.3612555.249.009.2793.4880
    [13]a1Δ1.3622567.247.489.2854.10210186.7
    [13]b1Σ+1.3622576.747.349.2984.20818881.3
    TeH+[14]X3Σ1.64252147.836.236.23512.8460
    [14]a1Δ1.64042171.036.576.25473.2877590
    [14]b1Σ+1.63832184.236.246.27113.35115467
    下载: 导出CSV

    表 4  SeH+离子Ω 态的离解关系

    Table 4.  Dissociation relationships of Ω states of SeH+.

    原子态Ω态相对能量/cm–1
    本文工作文献[9]a实验值[10]
    Se+(4S3/2) + H(2S1/2)2, 1, 1, 0+, 0000
    Se+(2D3/2) + H(2S1/2)2, 1, 1, 0+, 013189.01774513168.2
    Se+(2D5/2) + H(2S1/2)3, 2, 2, 1, 1, 0+, 013806.51834713784.4
    Se+(2P1/2) + H(2S1/2)1, 0+, 023115.923038.3
    Se+(2P3/2) + H(2S1/2)2, 1, 1, 0+, 023928.723894.8
    a根据文献[9]的计算数据推导得到.
    下载: 导出CSV

    表 5  SeH+离子Ω态的光谱常数

    Table 5.  Spectroscopic constants of the Ω states of SeH+.

    电子态Reωe /cm–1ωeχe /cm–1Be /cm–1De /eVTe /cm–1
    X10+1.46612385.5645.667.88023.3800
    X211.46622386.1546.027.87903.348252.4
    a2第一势阱1.46452392.7641.297.89672.5259408.2
    第二势阱3.5800168.6033.671.33990.03027016.9
    b0+1.46312406.9444.207.91272.75818213.8
    A12第一势阱1.64181396.1053.296.33330.34030201.1
    第二势阱2.41322295.44131.222.99381.26230248.9
    A21第一势阱1.64571381.3753.816.32290.32931060.0
    第二势阱3.5900152.2225.811.33530.03027018.9
    A30第一势阱1.64291391.2855.786.37150.30732273.5
    第二势阱3.6000151.9325.771.33390.03027019.3
    A40+第一势阱1.63681385.2418.096.31230.96232473.0
    第二势阱2.7918676.2090.612.18970.16739685.4
    c1第一势阱1.81610.04436979.9
    第二势阱2.17931781.89149.333.56140.68734921.9
    下载: 导出CSV

    表 6  $ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$$ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$跃迁的弗兰克-康登因子(单位s-1)、总辐射速率和辐射寿命(单位: ns)

    Table 6.  Franck-Condon Factors, Emission rates (unit of s–1) and radiative lifetimes τ (unit of ns) of the $ {{\rm{A}}^3}\Pi \leftrightarrow {{\rm{X}}^3}{\Sigma ^ - }$ and $ {{\rm{A}}_2}1 \leftrightarrow {{\rm{X}}_1}{0^ + }$ transitions.

    跃迁ν'ν'' = 0ν'' = 1ν'' = 2ν'' = 3ν'' = 4ν'' = 5ΣAτ = 1/(ΣA)
    $ {\rm A^3}\Pi \leftrightarrow {\rm X^3}{\Sigma ^ - }$00.40790.36850.16660.04700.00880.00111339434746.6
    10.32710.00130.21220.27130.13980.04051310290763.2
    $ {\rm A_2}1 \leftrightarrow {\rm X_1}{0^ + }$00.38410.36880.17870.05490.01160.00171269392787.8
    10.31860.00010.17610.26950.16290.05581212188825.0
    下载: 导出CSV
  • [1]

    Ram R S, Bernath P F 2000 J. Mol. Spectrosc. 203 9Google Scholar

    [2]

    Lindgren B 1968 J. Mol. Spectrosc. 28 536Google Scholar

    [3]

    Davies P B, Handy B J, Lloyd E K M, Russell D K 1978 J. Chem. Phys. 68 3377Google Scholar

    [4]

    Brown J M, Carrington A, Sears T J 1979 Mol. Phys. 37 1837Google Scholar

    [5]

    Cliff D I, Davies P B, Handy J J, Thrush B A 1980 Chem. Phys. Lett. 75 9Google Scholar

    [6]

    Bollmark, Lindgren B, Sassenberg U 1980 Phys. Scr. 21 811Google Scholar

    [7]

    Brown J M, Fackerell A D 1982 Phys. Scr. 25 351Google Scholar

    [8]

    Ashworth S H, Brown J M 1991 Chem. Phys. Lett. 182 73Google Scholar

    [9]

    Balasubramanian K, Liao M Z, Han M 1987 Chem. Phys. Lett. 139 551Google Scholar

    [10]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC: National Bureau of Standards Publications) pp2, 153

    [11]

    Binning J R C, Curtiss L A 1990 J. Chem. Phys. 92 3688Google Scholar

    [12]

    Guberman S L 1995 J. Chem. Phys. 102 1699Google Scholar

    [13]

    Khadri F, Ndome H, Lahmar S, Lakhdar Z B, Hochlaf M 2006 J. Mol. Spectrosc. 237 232Google Scholar

    [14]

    Santos L G dos, Oliveira A G S de, Ornellas F R 2015 J. Chem. Phys. 142 024316Google Scholar

    [15]

    Song Y Z, Zhang L L, Gao S B, Meng Q T 2016 Sci. Rep. 6 37734Google Scholar

    [16]

    Zhang L L, Gao S B, Meng Q T, Pan J, Song Y Z 2018 J. Chem. Phys. 149 154303Google Scholar

    [17]

    施德恒, 刘慧, 孙金锋, 朱遵略, 刘玉芳 2010 物理学报 59 227Google Scholar

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2010 Acta Phys. Sin. 59 227Google Scholar

    [18]

    赵书涛, 梁桂颖, 李瑞等 2017 物理学报 66 063103Google Scholar

    Zhao S T, Liang G Y, Li R, et al. 2017 Acta Phys. Sin. 66 063103Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2010 MOLPRO, a Package of ab initio Programs (version 2010)

    [20]

    Knowles P J Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [21]

    Knowles P J Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [22]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [23]

    Knowles P J Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [24]

    Dunning T H Jr 1989 J. Chem. Phys. 90 1007Google Scholar

    [25]

    Wilson A K, Woon D E, Peterson K A, Dunning T H Jr 1999 J. Chem. Phys. 110 7667Google Scholar

    [26]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89Google Scholar

    [27]

    Hess B A 1986 Phys. Rev. A 33 3742Google Scholar

    [28]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [29]

    Le Roy R J 2007 Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [30]

    Stollenwerk P R, Kokish M G, Antonio G. S. Oliveira-Filho de A G S, Ornellas F R, Odom B C 2018 Atoms 6 53Google Scholar

    [31]

    Kjaergaard H G, Yu H, Schattka B J, Henry B R, Tarr A W 1990 J. Chem. Phys. 93 6239Google Scholar

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算. 物理学报, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [2] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [3] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [4] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [5] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [6] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [7] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [8] 万明杰, 柳福提, 黄多辉. 考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质. 物理学报, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [9] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [10] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [11] 余庚华, 刘鸿, 赵朋义, 徐炳明, 高当丽, 朱晓玲, 杨维. 采用相对论多组态Dirac-Hartree-Fock方法对Mg原子同位素位移的理论研究. 物理学报, 2017, 66(11): 113101. doi: 10.7498/aps.66.113101
    [12] 赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰. ZnH分子激发态的电子结构和跃迁性质的理论计算. 物理学报, 2017, 66(6): 063103. doi: 10.7498/aps.66.063103
    [13] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究. 物理学报, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [14] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性. 物理学报, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [15] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 张丽艳, 田颖, 张军杰, 胡丽丽. LiF及AlF3对掺Tm3+氟磷玻璃光学、光谱性质、析晶性能及结构的影响. 物理学报, 2010, 59(11): 8205-8211. doi: 10.7498/aps.59.8205
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  6982
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-05-11
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-08-05

/

返回文章
返回