-
一氧化碳分子离子(CO+)在大气及天体物理环境中起着关键作用,其不透明度的理论研究对辐射输运建模具有重要意义 . 本文基于实验观测数据,采用Modified-Morse势函数(MMorse)改进并构建了CO+分子离子X2Σ+、 A2Π和B2Σ+电子态的势能曲线,进一步提取了振动能级和光谱常数 . 同时,利用考虑Davidson修正的多参考组态相互作用(MRCI+Q)方法计算了势能曲线和电偶极跃迁矩 . 改进获得的MMorse势与计算得到的势能曲线非常吻合,且光谱常数和振动能级与其他理论和实验数据符合较好 . 结合MMorse势函数和从头计算获得的电偶极跃迁矩,计算了CO+分子离子在100 atm (1atm=1.01×105 Pa)压强下, 298 — 15000 K温度范围内的不透明度,并探究了不同温度对高温谱的影响 . 研究结果表明,高温环境(T>5000 K)会导致不同能带系统的谱线展宽与边界模糊,这种混合效应在T>10000 K时尤为突出,揭示了高温下分子离子光谱退化的微观机制 . 我们的研究可以为天体物理领域提供一些理论依据和数据支持.Carbon monoxide cation (CO+) plays a dominant role in some astrophysical atmosphere environments, where theoretical studies of its opacity are essential for radiative transport modeling. In this work, based on experimentally observed vibrational energy levels of the X²Σ⁺, A²Π, and B²Σ⁺ electronic states of CO⁺, we refined and constructed potential energy curves using a Modified Morse (MMorse) potential function, then the vibrational energy levels and spectroscopic constants are extracted. In the meantime, the internally contracted multireference configuration interaction approach (MRCI) with Davison size-extensivity correction (+Q) is employed to calculate the potential energy curves and transition dipole moments. The refined MMorse potential exhibits excellent agreement with the computed potential energy curves, while the spectroscopic constants and vibrational levels show strong consistency with existing theoretical and experimental data. The opacities of the CO+ molecule is computed at different temperatures under the pressure of 100 atm. It is found that with the increase of temperature, the opacities for transitions at long wavelength range are enlarged because of the larger population on excited electronic states at the higher temperature.
-
Keywords:
- Carbon monoxide cation /
- spectroscopic constants /
- opacities
-
[1] Liang G-Y, Peng Y-G, Li R, Wu Y, Wang J-G 2020 Chin. Phys. B 29 23101
[2] Li R, Sang J, Lin X, Li J, Liang G, Wu Y 2022 Chinese Phys. B 31 103101
[3] Liang G-Y, Peng Y-G, Li R, Wu Y, Wang J-G 2020 Chin, Phys, Lett, 37 123101
[4] Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102 (in Chinese) [陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 物理学报 71 143102]
[5] Xiao L, An S, Liu D, Minaev B F, Ågren H, Yan B 2025 Spectrochim. Acta, Part A 330 125704
[6] Herzberg G 1950 Molecular spectra and molecular structure: i (New York: Van Nostrand Reinhold Company) pp240-491
[7] Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450
[8] Krishna Swamy K S 1986 Earth Moon Planets 34 281
[9] Haridass C, Prasad C V V, Reddy S P 2000 Journal of Molecular Spectroscopy 199 180
[10] Krupenie P H 1966 The band spectrum of carbon monoxide (U.S.: national standard reference data series) pp1-37
[11] Huebner W F 1990 Physics and Chemistry of Comets ; with 147 Figures (Berlin Heidelberg: Springer) pp245-303
[12] Haridass C, Prasad C V V, Reddy S P 1992 ApJ 388 669
[13] Davies P B, Rothwell W J 1985 J. Chem. Phys. 83 5450
[14] Bembenek Z, Domin U, Kepa R, Porada K, Rytel M, Zachwieja M, Jakubek Z, Janjic J D 1994 Journal of Molecular Spectroscopy 165 205
[15] DeLange O E 1968 IEEE Spectr. 5 77
[16] Yang X, Wu Y, Chen Y 2007 Journal of Molecular Spectroscopy 245 84
[17] Zhuang H, Yang X, Wu S, Bi Z, Ma L, Liu Y, Chen Y 2001 Molecular Physics 99 1447
[18] Baltzer P, Lundqvist M, Wannberg B, Karlsson L, Larsson M, Hayes M A, West J B, Siggel M R F, Parr A C, Dehmer J L 1994 J. Phys. B: At. Mol. Opt. Phys. 27 4915
[19] Huber K-P, Herzberg G 1979 Molecular Spectra and Molecular Structure. 4: Constants of Diatomic Molecules (New York: van Nostrand Reinhold Comp)
[20] Reddy R R, Viswanath R 1990 J Astrophys Astron 11 67
[21] Kępa R, Malak Z, Szajna W, Zachwieja M 2003 Journal of Molecular Spectroscopy 220 58
[22] Wu Y, Yang X, Guo Y, Chen Y 2008 Journal of Molecular Spectroscopy 248 81
[23] Coxon J A, Kępa R, Piotrowska I 2010 J. Mol. Spectrosc. 262 107
[24] Hamilton P A, Hughes A N, Sales K D 1993 The Journal of Chemical Physics 99 436
[25] Araújo J P, Ballester M Y, Lugão I G, Silva R P, Martins M P 2024 J Mol Model 30 352
[26] Tobias I, Fallon R J, Vanderslice J T 1960 J. Chem. Phys. 33 1638
[27] Krupenie P H, Weissman S 1965 J. Chem. Phys. 43 1529
[28] Singh R B, Rai D K 1966 J. Mol. Spectrosc. 19 424
[29] Locht R 1977 Chemical Physics 22 13
[30] Honjou N, Sasaki F 1979 Molecular Physics 37 1593
[31] Rosmus P, Werner H-J 1982 Molecular Physics 47 661
[32] Okada K, Iwata S 2000 The Journal of Chemical Physics 112 1804
[33] Mezei J Z, Backodissa-Kiminou R D, Tudorache D E, Morel V, Chakrabarti K, Motapon O, Dulieu O, Robert J, Tchang-Brillet W-Ü L, Bultel A, Urbain X, Tennyson J, Hassouni K, Schneider I F 2015 Plasma Sources Sci. Technol. 24 035005
[34] Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys. J. 613 567
[35] Mourik T V, Wilson A K, Jr T H D 1999 Mol. Phys. 99 529
[36] Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[37] Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167
[38] Yurchenko S N, Lodi L, Tennyson J, Stolyarov A V 2016 Comput. Phys. Commun. 202 262
[39] Yurchenko S N, Al-Refaie A F, Tennyson J 2018 Astron. Astrophys. 614 A131
[40] https://physics.nist.gov/cgi-bin/ASD/levels_pt.pl [2025-3-11]
[41] Coxon J A, Kępa R, Piotrowska I 2010 Journal of Molecular Spectroscopy 262 107
[42] Ventura L R, Da Silva R S, Ballester M Y, Fellows C E 2020 Journal of Quantitative Spectroscopy and Radiative Transfer 256 107312
[43] Reddy R R, Nazeer Ahammed Y, Rama Gopal K, Baba Basha D 2004 Journal of Quantitative Spectroscopy and Radiative Transfer 85 105
[44] Szajna W, Kepa R, Zachwieja M 2004 Eur. Phys. J. D 30 49
[45] Hakalla R, Szajna W, Piotrowska I, Malicka M I, Zachwieja M, Kępa R 2019 J. Quant. Spectrosc. Radiat. Transfer 234 159
[46] Szajna W, Kȩpa R, Field R W, Hakalla R 2024 J. Quant. Spectrosc. Radiat. Transfer 324 109059
计量
- 文章访问数: 14
- PDF下载量: 2
- 被引次数: 0