搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电倍增管时间测量误差补偿方法研究

王翀 党文斌 朱炳利 杨凯 杨嘉皓 韩江浩

引用本文:
Citation:

光电倍增管时间测量误差补偿方法研究

王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩

Method of compensating for time measurement error of photomultiplier tube

Wang Chong, Dang Wen-Bin, Zhu Bing-Li, Yang Kai, Yang Jia-Hao, Han Jiang-Hao
PDF
HTML
导出引用
  • 目前广泛使用的基于微通道板的光电倍增管, 其时间分辨率受到光电子信号在各部分渡越时间限制, 为光电子信号的时间信息测量带来一定程度的影响. 对影响光电倍增管时间分辨率的参数进行分析, 针对信号在阳极上的时间测量误差进行具体研究, 确定由光电子信号在阳极位置上的差异是造成信号时间测量误差的重要因素, 提出了一种简单且行之有效的误差补偿方法. 采用延迟线阳极获取光电子信号的位置信息, 将位置信息转化为该位置传输至电极端口的时间信息, 通过这一时间信息对光电子信号的时间测量误差进行弥补. 实验结果表明, 该误差补偿方法能有效提升光电子信号的时间测量精度, 为提高基于微通道板的光电倍增管时间分辨率提供解决思路和理论依据.
    In order to improve the temporal resolution of photomultiplier tubes, our research group has conducted the in-depth research on photomultiplier tubes based on microchannel plates that are widely used at present. The time resolution of photomultiplier tube based on microchannel plate is limited by the transit time of photoelectric signal in each part, including the transit time of photoelectric signal in the transmission process of photocathode to microchannel plate, the transit time of photoelectric signal in microchannel plate time, the transit time of the photoelectric signal from the microchannel plate to the detector anode, and the transit time of the photoelectric signal on the anode to the electrode port. The transit time of the whole process has a certain degree of influence on the time information measurement of the optoelectronic signal. In this study, various parameters affecting the time resolution of the photomultiplier tube are analyzed, and it is found that the different positions of the photoelectron signal on the anode will bring errors to the measurement of the arrival time of the signal at the anode, and the photoelectric signal is transmitted to the electrode port at the affected point of the anode The spent time will cause the signal measurement time to lag behind the real time, which indirectly affects the time resolution of the system. Therefore, a specific study is carried out on the time measurement error of the signal on the anode, and it is determined that the difference of the photoelectron signal on the anode position is an important factor causing the signal time measurement error, and a simple and effective method of compensating for error is proposed. In the research process, the delay line anode is used, and the positional resolution principle of the photoelectric signal is used to obtain the position information of the photoelectron signal on the anode, and the position information is converted into the time information transmitted from the position to the electrode port. The theoretical value of the transit time on the anode is offset, eliminating unnecessary time in the time-of-arrival measurement of the photoelectron signal. The time measurement error of the optoelectronic signal is compensated for by this time information. The experimental results show that the error compensation method can effectively improve the time measurement accuracy of optoelectronic signals, and provide solutions and theoretical basis for improving the time resolution of photomultiplier tubes based on microchannel plates.
      通信作者: 党文斌, Dang_wb@163.com
    • 基金项目: 国家自然科学基金(批准号: 61805199)和陕西省自然科学基金(批准号: 2020JM-578)资助的课题.
      Corresponding author: Dang Wen-Bin, Dang_wb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61805199 ), and the Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-578).
    [1]

    高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar

    Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar

    [2]

    Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar

    [3]

    王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar

    Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar

    [4]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar

    [5]

    Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar

    [6]

    Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar

    [7]

    贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar

    He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar

    [8]

    程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press

    Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press

    [9]

    张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar

    Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar

    [10]

    雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)

    Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [11]

    鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)

    Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [12]

    Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar

    [13]

    缑永胜 2017 博士学位论文 (北京: 中国科学院大学)

    Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [14]

    杨文正 2010 博士学位论文 (北京: 中国科学院大学)

    Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [15]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542

    [16]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar

    [17]

    Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar

    [18]

    Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61

    [19]

    雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar

    Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar

    [20]

    潘京生 2021 激光与光电子学进展 58 80Google Scholar

    Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar

  • 图 1  TCSPC系统装置

    Fig. 1.  TCSPC system device.

    图 2  光电子在MCP-PMT中渡越示意图

    Fig. 2.  Schematic diagram of photoelectron transition in MCP-PMT.

    图 3  阳极接收光电子信号示意图

    Fig. 3.  Schematic diagram of anode receiving photoelectron signal

    图 4  延迟线阳极接收信号示意图

    Fig. 4.  Schematic diagram of the signal received by the anode of the delay line.

    图 5  (a) 延迟线收集到光电子; (b) 二维延迟线位置分辨图示

    Fig. 5.  (a) Photoelectrons collected by delay line; (b) position-resolved illustration of a 2D delay line.

    图 6  (a) 延迟线阳极实物图; (b) 延迟线阳极探测器示意图

    Fig. 6.  (a) Real picture of delay line anode; (b) schematic diagram of the delay line anode detector.

    图 7  (a) 上层延迟线端到端测试; (b) 下层延迟线端到端测试

    Fig. 7.  (a) The end-to-end test of the upper delay line; (b) the end-to-end test of the lower delay line.

    图 8  (a)—(h) 分别为a, b, c, d, e, f, g, h的信号脉冲

    Fig. 8.  (a)–(h) are the signal pulses at point a, b, c, d, e, f, g, h, respectively.

    表 1  端到端延时测试结果

    Table 1.  End-to-end latency test results.

    端到端延迟/ns平均幅值/mV衰减/%
    X 方向4.7528642.8
    Y 方向6.1533632.8
    下载: 导出CSV

    表 2  时间测量误差补偿结果

    Table 2.  Time measurement error compensation results.

    随机位置点到达时间测试值/ns到达时间实际值/ns
    a7.144.956
    b6.785.019
    c6.485.029
    d5.9254.747
    e6.54.918
    f5.3814.351
    g6.6675.062
    h6.3584.932
    下载: 导出CSV
  • [1]

    高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar

    Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar

    [2]

    Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar

    [3]

    王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar

    Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar

    [4]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar

    [5]

    Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar

    [6]

    Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar

    [7]

    贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar

    He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar

    [8]

    程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press

    Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press

    [9]

    张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar

    Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar

    [10]

    雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)

    Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [11]

    鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)

    Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [12]

    Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar

    [13]

    缑永胜 2017 博士学位论文 (北京: 中国科学院大学)

    Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [14]

    杨文正 2010 博士学位论文 (北京: 中国科学院大学)

    Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)

    [15]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542

    [16]

    蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar

    Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar

    [17]

    Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar

    [18]

    Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61

    [19]

    雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar

    Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar

    [20]

    潘京生 2021 激光与光电子学进展 58 80Google Scholar

    Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2023, 72(24): 248502. doi: 10.7498/aps.72.20231382
    [3] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220537
    [4] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响. 物理学报, 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [5] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [6] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [7] 田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿. 小型条纹管数值模拟及实验研究. 物理学报, 2018, 67(18): 188501. doi: 10.7498/aps.67.20180643
    [8] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量. 物理学报, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [9] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [10] 郭乐慧, 田进寿, 卢裕, 李红伟. 一种用于中微子探测的3-inch光电倍增管的优化设计. 物理学报, 2016, 65(22): 228501. doi: 10.7498/aps.65.228501
    [11] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [12] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [13] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [14] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究. 物理学报, 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [15] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究. 物理学报, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [16] 何永周. 大块永磁铁低温剩磁测量技术研究. 物理学报, 2013, 62(21): 217502. doi: 10.7498/aps.62.217502
    [17] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [18] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析. 物理学报, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [19] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究. 物理学报, 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [20] 王绍民. 光电倍增管时间分辨特性的探讨. 物理学报, 1962, 18(11): 600-604. doi: 10.7498/aps.18.600
计量
  • 文章访问数:  3578
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-07-28
  • 上网日期:  2022-11-09
  • 刊出日期:  2022-11-20

/

返回文章
返回