-
介绍了一套用于机载平台测量的非相干宽带腔增强吸收光谱(IBBCEAS)系统,并应用于实际大气NO2空间分布的高时间分辨率观测.为满足机载测量中对时间分辨率的需求,系统采用离轴抛物面镜代替消色差透镜提高光学耦合效率;并运用Allan方差,对系统性能进行了分析.通过腔增强吸收光谱系统与长光程吸收光谱系统对实际大气NO2的对比测试,两者线性相关系数R2达到0.86.将IBBCEAS系统应用于机载平台,在时间分辨率为2 s的情况下,探测限达到95 ppt(1).通过机载观测,获得了华北地区石家庄等地上空对流层大气NO2的廓线信息.
-
关键词:
- 非相干宽带腔增强吸收光谱 /
- 机载 /
- 对流层NO2廓线
Nitrogen dioxide (NO2) is an important trace gas in the troposphere and plays a vital role in many aspects of the chemistry of the atmosphere. Accurate measurement of NO2 is the primary step to understand its role in atmospheric chemistry and to establish effective pollution prevention policies. Relatively few measurements of the NO2 profile in troposphere by using point-type instruments with high temporal resolution have been carried out in China. Due to the relatively poor measurement environment on airborne platform, the measurement system requires good anti-vibration ability, stability and environmental adaptability. A home-built incoherent broadband cavity enhanced absorption spectrometer (IBBCEAS) on the airborne platform is presented in this paper, and applied to high temporal resolution observations of the actual atmospheric NO2 spatial distribution. According to the strong absorption of NO2 in a wavelength range from 449 nm to 470 nm, we choose a high-power 457 nm light-emitting diode (LED) as a light source. A Peltier is used to control LED temperature and to stabilize the LED temperature at (200.1)℃. The pure PFA material optical cavity and sampling tube are used to reduce wall loss. And we choose the highly reflecting mirrors (reflectivity R0.9999@440-450 nm) to improve the effective optical path. A 2 m filter is used at the inlet of instrument to remove most of the particulate matter in the sample flows, which reduce the effect of particulate matter on the effective path length. In order to meet the requirement for time resolution in airborne measurement, we use an off-axis paraboloic mirror instead of an achromatic lens to improve the optical coupling efficiency. The reflectivity of the highly reflecting mirror is calibrated by the difference in Rayleigh scattering between He and N2. And the optimum averaging time of the IBBCEAS instrument is confirmed to be 1000 s by the Allan variance analysis. Detection limit (1) of 10 ppt for NO2 is achieved with an optimum acquisition time of 1000 s. Concentrations of NO2 are recorded and compared with data from a long path different optical absorption spectroscopy instrument, and the results show good agreement with each other. The linear correlation coefficient R2 is 0.86 in a slope of 0.92 with an offset of -0.402 ppb. The IBBCEAS system is deployed on an airborne platform, and the detection limit is 95 ppt (1) with a time resolution of 2 s. The profile of tropospheric NO2 by airborne observation is obtained over Shijiazhuang in Northern China. IBBCEAS system in the airborne platform shows good stability.-
Keywords:
- incoherent broadband cavity enhanced absorption spectrometer /
- airborne /
- troposphere NO2 profile
[1] Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916
[2] Lee J, Kim K H, Kim Y J, Lee J 2008 J. Environ. Manage. 86 750
[3] Lee J S, Kim Y J, Kuk B, Geyer A, Platt U 2005 Environ. Monit. Assess. 104 281
[4] Li Y Q, Demerjian K L, Zahniser M S, Nelson D D, Mcmanus J B, Herndon S C 2004 J. Geophys. Res. 109 D16S08
[5] Thornton J A, Wooldridge P J, Cohen R C 2000 Anal. Chem. 72 528
[6] Bucsela E J, Perring A E, Cohen R C, Boersma K F, Celarier E A, Gleason J F, Wenig M O, Bertram T H, Wooldridge P J, Dirksen R 2008 J. Geophys. Res. 42 4480
[7] Boersma K F, Jacob D J, Bucsela E J, Perring A E, Dirksen R, JvdA R, Yantosca R M, Park R J, Wenig M O, Bertram T H 2008 Atmos. Environ. 42 4480
[8] Wagner N L, Dub W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227
[9] Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759
[10] Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Eloranta E W, Koenig T K, Morley B, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmos. Measur. Tech. 8 2121
[11] Min K E, Washenfelder R A, Dub W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 11209
[12] Heland J, Schlager H, Richter A, Burrows J P 2002 Geophys. Res. Lett. 29 44
[13] Petritoli A, Bonasoni P, Giovanelli G, Ravegnani F, Kostadinov I, Bortoli D, Weiss A, Schaub D, Richter A, Fortezza F 2004 J. Geophys. Res. 109 D15307
[14] Martin R V, Parrish D D, Ryerson T B, Nicks D K, Chance K, Kurosu T P, Jacob D J, Sturges E D, Fried A, Wert B P 2004 J. Geophys. Res. 109 D24307
[15] Lamsal L N, Krotkov N A, Celarier E A, Swartz W H, Pickering K E, Bucsela E J, Gleason J F, Martin R V, Philip S, Irie H, Cede A, Herman J, Weinheimer A, Szykman J J, Knepp T N 2014 Atmos. Chem. Phys. 14 11587
[16] Ventrillard-Courtillot I, O'Brien E S, Kassi S, Mjean G, Romanini D 2010 Appl. Phys. B 101 661
[17] Hoch D J, Buxmann J, Sihler H, Phler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199
[18] Washenfelder R A, Attwood A R, Flores J M, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 9927
[19] Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 77
[20] Dong M L, Xu X Z, Zhao W X, Gu X J, Hu C J, Gai Y B, Gao X M, Huang W, Zhang W J 2014 J. Appl. Opt. 35 264 (in Chinese) [董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊 2014 应用光学 35 264]
[21] Duan J, Qin M, Fang W, Ling L Y, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 180701 (in Chinese) [段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2015 物理学报 64 180701]
[22] Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544
[23] Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 物理学报 64 114211]
[24] Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 物理学报 62 054206]
[25] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779
[26] Shardanand, Rao A D P 1977 NASA Technical Note (Washington D. C: National Aeronautics and Space Administration)
[27] Sneep M, Ubachs W 2005 J. Quantit. Spectrosc. Radiat. Trans. 92 293
[28] Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131
[29] Wu T, Zhao W, Chen W, Zhang W, Gao X 2008 Appl. Phys. B 94 85
-
[1] Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916
[2] Lee J, Kim K H, Kim Y J, Lee J 2008 J. Environ. Manage. 86 750
[3] Lee J S, Kim Y J, Kuk B, Geyer A, Platt U 2005 Environ. Monit. Assess. 104 281
[4] Li Y Q, Demerjian K L, Zahniser M S, Nelson D D, Mcmanus J B, Herndon S C 2004 J. Geophys. Res. 109 D16S08
[5] Thornton J A, Wooldridge P J, Cohen R C 2000 Anal. Chem. 72 528
[6] Bucsela E J, Perring A E, Cohen R C, Boersma K F, Celarier E A, Gleason J F, Wenig M O, Bertram T H, Wooldridge P J, Dirksen R 2008 J. Geophys. Res. 42 4480
[7] Boersma K F, Jacob D J, Bucsela E J, Perring A E, Dirksen R, JvdA R, Yantosca R M, Park R J, Wenig M O, Bertram T H 2008 Atmos. Environ. 42 4480
[8] Wagner N L, Dub W P, Washenfelder R A, Young C J, Pollack I B, Ryerson T B, Brown S S 2011 Atmos. Meas. Tech. 4 1227
[9] Kennedy O J, Ouyang B, Langridge J M, Daniels M J S, Bauguitte S, Freshwater R, McLeod M W, Ironmonger C, Sendall J, Norris O, Nightingale R, Ball S M, Jones R L 2011 Atmos. Measur. Tech. 4 1759
[10] Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Eloranta E W, Koenig T K, Morley B, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmos. Measur. Tech. 8 2121
[11] Min K E, Washenfelder R A, Dub W P, Langford A O, Edwards P M, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 11209
[12] Heland J, Schlager H, Richter A, Burrows J P 2002 Geophys. Res. Lett. 29 44
[13] Petritoli A, Bonasoni P, Giovanelli G, Ravegnani F, Kostadinov I, Bortoli D, Weiss A, Schaub D, Richter A, Fortezza F 2004 J. Geophys. Res. 109 D15307
[14] Martin R V, Parrish D D, Ryerson T B, Nicks D K, Chance K, Kurosu T P, Jacob D J, Sturges E D, Fried A, Wert B P 2004 J. Geophys. Res. 109 D24307
[15] Lamsal L N, Krotkov N A, Celarier E A, Swartz W H, Pickering K E, Bucsela E J, Gleason J F, Martin R V, Philip S, Irie H, Cede A, Herman J, Weinheimer A, Szykman J J, Knepp T N 2014 Atmos. Chem. Phys. 14 11587
[16] Ventrillard-Courtillot I, O'Brien E S, Kassi S, Mjean G, Romanini D 2010 Appl. Phys. B 101 661
[17] Hoch D J, Buxmann J, Sihler H, Phler D, Zetzsch C, Platt U 2014 Atmos. Measur. Tech. 7 199
[18] Washenfelder R A, Attwood A R, Flores J M, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. Discuss. 8 9927
[19] Ling L, Xie P, Qin M, Fang W, Jiang Y, Hu R, Zheng N 2013 Chin. Opt. Lett. 11 77
[20] Dong M L, Xu X Z, Zhao W X, Gu X J, Hu C J, Gai Y B, Gao X M, Huang W, Zhang W J 2014 J. Appl. Opt. 35 264 (in Chinese) [董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊 2014 应用光学 35 264]
[21] Duan J, Qin M, Fang W, Ling L Y, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 180701 (in Chinese) [段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2015 物理学报 64 180701]
[22] Wu T, Zha Q, Chen W, Xu Z, Wang T, He X 2014 Atmos. Environ. 95 544
[23] Wu F C, Li A, Xie P H, Chen H, Ling L Y, Xu J, Mou F S, Zhang J, Shen J C, Liu J G, Liu W Q 2015 Acta Phys. Sin. 64 114211 (in Chinese) [吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清 2015 物理学报 64 114211]
[24] Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 物理学报 62 054206]
[25] Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779
[26] Shardanand, Rao A D P 1977 NASA Technical Note (Washington D. C: National Aeronautics and Space Administration)
[27] Sneep M, Ubachs W 2005 J. Quantit. Spectrosc. Radiat. Trans. 92 293
[28] Werle P, Mcke R, Slemr F 1993 Appl. Phys. B 57 131
[29] Wu T, Zhao W, Chen W, Zhang W, Gao X 2008 Appl. Phys. B 94 85
计量
- 文章访问数: 6464
- PDF下载量: 267
- 被引次数: 0