搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2

凌六一 秦敏 谢品华 胡仁志 方武 江宇 刘建国 刘文清

引用本文:
Citation:

基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2

凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清

Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED optical source

Ling Liu-Yi, Qin Min, Xie Pin-Hua, Hu Ren-Zhi, Fang Wu, Jiang Yu, Liu Jian-Guo, Liu Wen-Qing
PDF
导出引用
  • 介绍了基于近紫外发光二极管LED (中心波长约372 nm,半高宽13 nm) 光源的非相干宽带腔增强吸收光谱技术,同时用于探测痕量气体HONO和NO2. LED出射光经准直后耦合进入长度为70 cm,由两块高反射率镜片组成的高精密光学腔内. 分别测量了氮气消光谱和氦气消光谱,通过两者瑞利散射截面的差异而引起光谱强度的变化来标定镜片反射率.在360390 nm反演波段内,镜片反射率在390 nm处最大且为0.99962, 对应测量NO2/HONO混合物时的最大光程约1.71 km,并利用最小二乘拟合反演出了HONO和NO2的浓度值.当光谱采集时间为1000 s时, HONO和NO2的探测灵敏度(1) 分别为0.6 ppbv和1.9 ppbv.实验结果表明,该技术为实现大气痕量气体的高灵敏度在线监测提供了另一种可能的途径.
    An application of incoherent broadband cavity enhanced absorption spectroscopy with a near-ultraviolet LED (peak 372 nm and FWHM is 13 nm) to simultaneously detecting HONO and NO2 is described. The light emitted from the LED is collimated and then coupled into an 70 cm long high finesse cavity formed with two high reflectivity mirrors. The spectra are respectively recorded when the cell is filled with He and then N2, and the mirror reflectivity is determined from the change in transmitted intensity due to the difference in Rayleigh scattering cross-section between He and N2. The maximum of mirror reflectivity is 0.99962 at 390 nm in a spectral region of 360-390 nm, and corresponding maximum of light path length is about 1.71 km when NO2/HONO mixture is measured. The concentrations of HONO and NO2 are obtained using least-squares fit. Detection sensitivity (1) of 0.6 ppbv for HONO and 1.9 ppbv for NO2 are achieved using an acquisition time of 1000 s. The experimental results demonstrate the possible application of this technology to in situ monitoring the trace gases in the atmosphere.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 60808034) 和国家高技术研究发展计划(863计划) (批准号: 2009AA063006)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60808034) and the National High Technology Research and Development Program of China (Grant No. 2009AA063006).
    [1]

    Ehhalt D H 1994 Sci. Total Environ. 143 1

    [2]

    Alicke B, Platt U,Stutz J 2002 J. Geophys. Res-Atmos. 107 8196

    [3]

    Rohrer F, Bohn B, Brauers T, Bruning D, Johnen F J, Wahner A, Kleffmann J 2005 Atmos. Chem. Phys. 5 2189

    [4]

    Calvert J G, Yarwood G, Dunker A M 1994 Res. Chem. Intermed. 20 463

    [5]

    Goodman A L, Underwood G M, Grassian V H 1999 J. Phys. Chem. A 103 7217

    [6]

    Kleffmann J, Becker K H, Wiesen P 1998 Atmos. Environ. 32 2721

    [7]

    Stutz J, Oh H J, Whitlow S I, Anderson C, Dibbb J E, Flynn J H, Rappenglueck B, Lefer B 2010 Atmos. Environ. 44 4090

    [8]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu H G, Zhang W J 2006 J. Environ. Sci.-China 18 69

    [9]

    Hao N, Zhou B, Chen L M 2006 Acta Phys. Sin. 55 1529 (in Chinese) [郝楠, 周斌, 陈立民 2006 物理学报 55 1529]

    [10]

    Stutz J, Alicke B, Ackermann R, Geyer A, Wang S H, White A B, Williams E J, Spicer C W, Fast J D 2004 J. Geophys. Res-Atmos. 109 D03307

    [11]

    Wang S H, Ackermann R, Spicer C W, Fast J D, Schmeling M, Stutz J 2003 Geophys. Res. Lett. 30 49

    [12]

    Febo A, Perrino C, Allegrini I 1996 Atmos. Environ. 30 3599

    [13]

    Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy: Principles and Applications (Berlin: Springer) p597

    [14]

    Wang Z R, Zhou B, Wang S S, Yang S N 2011 Acta Phys. Sin. 60 060703 (in Chinese) [王焯如, 周斌, 王珊珊, 杨素娜 2011 物理学报 60 060703]

    [15]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [16]

    Paul B, Scherer J J, Okeefe A, Saykally R J 1997 Laser Focus World 33 71

    [17]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [18]

    Provencal R, Gupta M, Owano T G, Baer D S, Ricci K N, O'Keefe A, Podolske J R 2005 Appl. Opt. 44 6712

    [19]

    Wang L M, Zhang J S 2000 Environ. Sci. Technol. 34 4221

    [20]

    Kasyutich V L, Martin P A, Holdsworth R J 2006 Meas. Sci. Technol. 17 923

    [21]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 11

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [24]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Technol. 42 890

    [25]

    Wu T, Zhao W, Chen W, Zhang W, Gao X 2009 Appl. Phys. B Lasers O 94 85

    [26]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [27]

    Triki M, Cermak P, Mejean G, Romanini D 2008 Appl. Phys. B Lasers O 91 195

    [28]

    Fiedler S E, Hese A, Ruth A A 2005 Rev. Sci. Instrum. 76 023107

    [29]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [30]

    Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110

    [31]

    Langridge J M, Laurila T, Watt R S, Jones R L, Kaminski C F, Hult J 2008 Opt. Express 16 10178

    [32]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [33]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797

    [34]

    Shardanand S, Rao A D P 1977 NASA Technical Note (Wallops Island: Wallops Flight Center)

    [35]

    Naus H, Ubachs W 2000 Opt. Lett. 25 347

    [36]

    Platt U, Meinen J, Poehler D, Leisner T 2009 Atmos. Meas. Tech. 2 713

    [37]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1

    [38]

    Stutz J, Kim E S, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res-Atmos. 105 14585

  • [1]

    Ehhalt D H 1994 Sci. Total Environ. 143 1

    [2]

    Alicke B, Platt U,Stutz J 2002 J. Geophys. Res-Atmos. 107 8196

    [3]

    Rohrer F, Bohn B, Brauers T, Bruning D, Johnen F J, Wahner A, Kleffmann J 2005 Atmos. Chem. Phys. 5 2189

    [4]

    Calvert J G, Yarwood G, Dunker A M 1994 Res. Chem. Intermed. 20 463

    [5]

    Goodman A L, Underwood G M, Grassian V H 1999 J. Phys. Chem. A 103 7217

    [6]

    Kleffmann J, Becker K H, Wiesen P 1998 Atmos. Environ. 32 2721

    [7]

    Stutz J, Oh H J, Whitlow S I, Anderson C, Dibbb J E, Flynn J H, Rappenglueck B, Lefer B 2010 Atmos. Environ. 44 4090

    [8]

    Qin M, Xie P H, Liu W Q, Li A, Dou K, Fang W, Liu H G, Zhang W J 2006 J. Environ. Sci.-China 18 69

    [9]

    Hao N, Zhou B, Chen L M 2006 Acta Phys. Sin. 55 1529 (in Chinese) [郝楠, 周斌, 陈立民 2006 物理学报 55 1529]

    [10]

    Stutz J, Alicke B, Ackermann R, Geyer A, Wang S H, White A B, Williams E J, Spicer C W, Fast J D 2004 J. Geophys. Res-Atmos. 109 D03307

    [11]

    Wang S H, Ackermann R, Spicer C W, Fast J D, Schmeling M, Stutz J 2003 Geophys. Res. Lett. 30 49

    [12]

    Febo A, Perrino C, Allegrini I 1996 Atmos. Environ. 30 3599

    [13]

    Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy: Principles and Applications (Berlin: Springer) p597

    [14]

    Wang Z R, Zhou B, Wang S S, Yang S N 2011 Acta Phys. Sin. 60 060703 (in Chinese) [王焯如, 周斌, 王珊珊, 杨素娜 2011 物理学报 60 060703]

    [15]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [16]

    Paul B, Scherer J J, Okeefe A, Saykally R J 1997 Laser Focus World 33 71

    [17]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [18]

    Provencal R, Gupta M, Owano T G, Baer D S, Ricci K N, O'Keefe A, Podolske J R 2005 Appl. Opt. 44 6712

    [19]

    Wang L M, Zhang J S 2000 Environ. Sci. Technol. 34 4221

    [20]

    Kasyutich V L, Martin P A, Holdsworth R J 2006 Meas. Sci. Technol. 17 923

    [21]

    Fiedler S E, Hese A, Ruth A A 2003 Chem. Phys. Lett. 371 11

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779

    [23]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471

    [24]

    Gherman T, Venables D S, Vaughan S, Orphal J, Ruth A A 2008 Environ. Sci. Technol. 42 890

    [25]

    Wu T, Zhao W, Chen W, Zhang W, Gao X 2009 Appl. Phys. B Lasers O 94 85

    [26]

    Venables D S, Gherman T, Orphal J, Wenger J C, Ruth A A 2006 Environ. Sci. Technol. 40 6758

    [27]

    Triki M, Cermak P, Mejean G, Romanini D 2008 Appl. Phys. B Lasers O 91 195

    [28]

    Fiedler S E, Hese A, Ruth A A 2005 Rev. Sci. Instrum. 76 023107

    [29]

    Ball S M, Langridge J M, Jones R L 2004 Chem. Phys. Lett. 398 68

    [30]

    Langridge J M, Ball S M, Shillings A J L, Jones R L 2008 Rev. Sci. Instrum. 79 123110

    [31]

    Langridge J M, Laurila T, Watt R S, Jones R L, Kaminski C F, Hult J 2008 Opt. Express 16 10178

    [32]

    Langridge J M, Ball S M, Jones R L 2006 Analyst 131 916

    [33]

    Thalman R, Volkamer R 2010 Atmos. Meas. Tech. 3 1797

    [34]

    Shardanand S, Rao A D P 1977 NASA Technical Note (Wallops Island: Wallops Flight Center)

    [35]

    Naus H, Ubachs W 2000 Opt. Lett. 25 347

    [36]

    Platt U, Meinen J, Poehler D, Leisner T 2009 Atmos. Meas. Tech. 2 713

    [37]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1

    [38]

    Stutz J, Kim E S, Platt U, Bruno P, Perrino C, Febo A 2000 J. Geophys. Res-Atmos. 105 14585

  • [1] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量. 物理学报, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [2] 张冬晓, 陈志斌, 肖程, 秦梦泽, 吴浩. 基于引力搜索算法的湍流相位屏生成方法. 物理学报, 2019, 68(13): 134205. doi: 10.7498/aps.68.20190081
    [3] 钟文婷, 刘君, 华灯鑫, 侯海彦, 晏克俊. 多波长发光二极管光源雷达系统与近地面低层大气气溶胶探测. 物理学报, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [4] 邵君宜, 林兆祥, 刘林美, 龚威. 1.572 μm附近CO2吸收光谱的测量. 物理学报, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [5] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [6] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量. 物理学报, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [7] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [8] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [9] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [10] 王利国, 吴振森, 王明军. 湍流大气中星载角反射器阵列回波的闪烁指数. 物理学报, 2013, 62(16): 164210. doi: 10.7498/aps.62.164210
    [11] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [12] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [13] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地. 用于POF的高性能共振腔发光二极管. 物理学报, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [14] 段民征, 郭霞. 辐射传输中的一个伪极限问题及其数学物理原理. 物理学报, 2009, 58(2): 1353-1357. doi: 10.7498/aps.58.1353
    [15] 李素文, 谢品华, 刘文清, 司福祺, 李 昂, 彭夫敏. 发光二极管在差分吸收光谱系统中的应用研究. 物理学报, 2008, 57(3): 1963-1967. doi: 10.7498/aps.57.1963
    [16] 韩 永, 王体健, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [17] 王 华, 王向朝, 曾爱军, 杨 坤. 大气湍流对斜程传输准单色高斯-谢尔光束空间相干性的影响. 物理学报, 2008, 57(1): 634-638. doi: 10.7498/aps.57.634
    [18] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] 罗 林, 王 黎, 程卫东, 沈忙作. 天文图像多帧盲反卷积收敛性的增强方法. 物理学报, 2006, 55(12): 6708-6714. doi: 10.7498/aps.55.6708
    [20] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
计量
  • 文章访问数:  7924
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-31
  • 修回日期:  2011-12-26
  • 刊出日期:  2012-07-05

/

返回文章
返回