搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.572 μm附近CO2吸收光谱的测量

邵君宜 林兆祥 刘林美 龚威

引用本文:
Citation:

1.572 μm附近CO2吸收光谱的测量

邵君宜, 林兆祥, 刘林美, 龚威

Measurement of absorption spectrum around 1.572 μm

Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei
PDF
导出引用
  • 应用自行构建的恒温差分吸收光谱探测系统,在230—320 K的温度范围内,精确探测1.572 μm附近CO2吸收谱线的变化,获得了不同温度和压强下CO2气体的吸收截面、自增宽系数、空气增宽系数,这些参数补充和完善了现有的数据库.定量分析了温度、压强对谱线的影响,建立了光学厚度和吸收截面的数值计算模型,并已经用于我国的CO2激光雷达,为其高精度数据反演奠定了技术基础.这些工作能够提高工作在该波段的差分吸收CO2探测激光雷达的反演精度.
    Differential absorption lidar (DIAL) is widely accepted as a most promising remote sensing technique for measuring the atmospheric CO2, and has been built in many countries to study the global climate change and carbon cycle. However, the imperfect information about CO2 spectrum leads to evident errors in estimating some parameters (such as the absorption cross sections, the broadening coefficients, the optical depth, etc.) which are the critical parameters in retrieving processes of a DIAL, and will eventually result in unacceptable errors of XCO2 retrievals. Coping with that problem, a self-built constant temperature differential absorption spectroscopy system has been set up which can be used to accurately measure the absorption spectrum of carbon dioxide in the band of 1.57 μm.#br#On that basis, the absorption spectra of the pure carbon dioxide are measured respectively at the temperatures from 230 K to 320 K and the pressures from 20 kPa to 100 kPa by the highprecision oscilloscope and wavelength meter. A series of optical depths at absorption peak is respectively calculated at different temperatures and the results show that the optical depth linearly and monotonically changes while the temperature increases from 230 K to 320 K. At the same time, the relations between the corresponding absorption cross sections and temperature are analyzed, showing that the absorption cross sections first increases and then decreases with temperature increasing. The self-broadening coefficients are inferred from the spectral data at the same temperature and different pressures, and the temperature-dependent exponent is calculated. Furthermore, the air-broadening coefficients are calculated by carbon dioxide absorption spectrum data from different mixing ratios and its temperature-dependent exponent is obtained. The temperature-dependent exponent of self-broadening coefficient is 0.644 and the temperature-dependent exponent of air-broadening coefficient is 0.764, which are almost the same as the data in the high-resolution transmission molecular absorption database (HITRAN). The numerical calculation formulae of optical depth and absorption cross section are verified through these results.#br#Those parameters supplement the widely-used HITRAN database. Moreover, quantitative analysis is conducted to explore the influences of temperature and pressure on CO2 spectrum, thereby establishing a function for modeling the differential absorption optical depth and the absorption cross-section. The above results have already been used in China's CO2-DIAL and lay a foundation of accurate retrieval. It is believed that other similar CO2-DIAL of which operating wavelength is around 1.572 μm would also benefit from those newly measured parameters.
      通信作者: 林兆祥, lin_zhaox@126.com
    • 基金项目: 国家自然科学基金(批准号:41127901)资助的课题.
      Corresponding author: Lin Zhao-Xiang, lin_zhaox@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41127901).
    [1]

    Imaki M, Kameyama S, Hirano Y, Ueno S, Sakaizawa D, Kawakami S, Nakajima M 2009 Opt. Lett. 34 10

    [2]

    Amediek, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Amediek A, Fix A, Ehret G, Caron J, Dyrand Y 2009 Atmosph. Measur. Tech. 2 755

    [4]

    Sakaizawa D, Kawakami S, Nakajima M, Sawa Y, Matsueda H 2010 J. Appl. Remote Sens. 4 1043548

    [5]

    Ambricof P F, Amodeo A, Girolamo P DI, Spinelli N 2000 Appl. Opt. 39 366847

    [6]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Opt. Sin. 32 17 (in Chinese) [马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [7]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志 2015 物理学报 64 154251]

    [8]

    Han G, Gong W, Ma X, Xiang C Z, Liang A L, Deng Y X 2015 Acta Phys. Sin. 64 244206 (in Chinese) [韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新 2015 物理学报 64 244206]

    [9]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [10]

    Han G, Gong W, Lin H, Ma X, Xiang C 2014 Appl. Phys. B 117 104

    [11]

    Gong W, Ma X, Dong Y, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [12]

    Han G, Lin H, Ma X, Xiang Z 2014 IEEE Trans. Geosci. Remote Sens. 53 3221

    [13]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [14]

    Johannes B, Tommaso S, Daniele R, Marco M, Alain C, Samir K 2015 J. Chem. Phys. 142 191103

    [15]

    Ivascu I R, Matei C E, Patachia M, Bratu A M, Dumitras D C 2015 Rom. J. Phys. 60 1212

    [16]

    Klimeshina T E, Petrova T M, Rodimova O B, Solodov A A, Solodov A M 2015 Atmos. Ocean. Opt. 28 387

    [17]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, B-oudon V, Brown L 2013 J. Quant. Spectrosc. Radiat. 130 4

    [18]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Radiat. 110 533

    [19]

    Bragg S L, Lawton S A, Wiswall C E 1985 Opt. Lett. 10 321

    [20]

    Joly L, Marnas F, Gibert F, Bruneau D, Grouidez B, Pierre H F, Durrya G, Dumelie N, Parvitte B, Zeninari V 2009 Appl. Opt. 48 295475

    [21]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M 2008 J. Appl. Phys. 47 1325

    [22]

    Li J S, Durrya G, Cousin J, Joly L, Parvitte B, Flamant P H, Gibert F, Zeninari V 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1411

    [23]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zéninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [24]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press)p133 (in Chinese) [陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133页

    [25]

    Bragg S L, Kelley J D 1987 Appl. Opt. 26 506

    [26]

    Kielkopf J F 1973 J. Opt. Soc. Am. 63 987

    [27]

    Zhou J, Zhang S L, Chen X H 2007 Spectrosc. Spect. Anal. 27 71259 (in Chinese) [周洁, 张时良, 陈晓虎 2007 光谱学光谱分析 27 71259]

  • [1]

    Imaki M, Kameyama S, Hirano Y, Ueno S, Sakaizawa D, Kawakami S, Nakajima M 2009 Opt. Lett. 34 10

    [2]

    Amediek, Fix A, Wirth M, Ehret G 2008 Appl. Phys. B 92 295

    [3]

    Amediek A, Fix A, Ehret G, Caron J, Dyrand Y 2009 Atmosph. Measur. Tech. 2 755

    [4]

    Sakaizawa D, Kawakami S, Nakajima M, Sawa Y, Matsueda H 2010 J. Appl. Remote Sens. 4 1043548

    [5]

    Ambricof P F, Amodeo A, Girolamo P DI, Spinelli N 2000 Appl. Opt. 39 366847

    [6]

    Ma X, Lin H, Ma Y Y, Gong W 2013 Acta Opt. Sin. 32 17 (in Chinese) [马昕, 林宏, 马盈盈, 龚威 2013 光学学报 32 17]

    [7]

    Ma X, Gong W, Ma Y Y, Fu D W, Han G, Xiang C Z 2015 Acta Phys. Sin. 64 154251 (in Chinese) [马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志 2015 物理学报 64 154251]

    [8]

    Han G, Gong W, Ma X, Xiang C Z, Liang A L, Deng Y X 2015 Acta Phys. Sin. 64 244206 (in Chinese) [韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新 2015 物理学报 64 244206]

    [9]

    Gong W, Han G, Ma X, Lin H 2013 Opt. Commun. 305 180

    [10]

    Han G, Gong W, Lin H, Ma X, Xiang C 2014 Appl. Phys. B 117 104

    [11]

    Gong W, Ma X, Dong Y, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [12]

    Han G, Lin H, Ma X, Xiang Z 2014 IEEE Trans. Geosci. Remote Sens. 53 3221

    [13]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [14]

    Johannes B, Tommaso S, Daniele R, Marco M, Alain C, Samir K 2015 J. Chem. Phys. 142 191103

    [15]

    Ivascu I R, Matei C E, Patachia M, Bratu A M, Dumitras D C 2015 Rom. J. Phys. 60 1212

    [16]

    Klimeshina T E, Petrova T M, Rodimova O B, Solodov A A, Solodov A M 2015 Atmos. Ocean. Opt. 28 387

    [17]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, B-oudon V, Brown L 2013 J. Quant. Spectrosc. Radiat. 130 4

    [18]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Radiat. 110 533

    [19]

    Bragg S L, Lawton S A, Wiswall C E 1985 Opt. Lett. 10 321

    [20]

    Joly L, Marnas F, Gibert F, Bruneau D, Grouidez B, Pierre H F, Durrya G, Dumelie N, Parvitte B, Zeninari V 2009 Appl. Opt. 48 295475

    [21]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M 2008 J. Appl. Phys. 47 1325

    [22]

    Li J S, Durrya G, Cousin J, Joly L, Parvitte B, Flamant P H, Gibert F, Zeninari V 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1411

    [23]

    Joly L, Gibert F, Grouiez B, Grossela A, Parvittea B, Durrya G, Zéninaria V 2008 J. Quant. Spectrosc. Radiat. Transfer 109 426

    [24]

    Lu T X, Lu Z Q 2006 The Theory and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press)p133 (in Chinese) [陆同兴, 路秩群 2006 激光光谱技术原理及应用(合肥:中国科学技术大学出版社) 第133页

    [25]

    Bragg S L, Kelley J D 1987 Appl. Opt. 26 506

    [26]

    Kielkopf J F 1973 J. Opt. Soc. Am. 63 987

    [27]

    Zhou J, Zhang S L, Chen X H 2007 Spectrosc. Spect. Anal. 27 71259 (in Chinese) [周洁, 张时良, 陈晓虎 2007 光谱学光谱分析 27 71259]

  • [1] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [2] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [3] 孙国栋, 秦来安, 张巳龙, 何枫, 谭逢富, 靖旭, 侯再红. 一种测量大气消光系数边界值的新方法. 物理学报, 2018, 67(5): 054205. doi: 10.7498/aps.67.20172008
    [4] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [5] 饶志敏, 华灯鑫, 何廷尧, 乐静. 基于本征荧光的生物气溶胶测量激光雷达性能. 物理学报, 2016, 65(20): 200701. doi: 10.7498/aps.65.200701
    [6] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [7] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [8] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [9] 狄慧鸽, 华灯鑫, 王玉峰, 闫庆. 米散射激光雷达重叠因子及全程回波信号标定技术研究. 物理学报, 2013, 62(9): 094215. doi: 10.7498/aps.62.094215
    [10] 梁善勇, 王江安, 张峰, 吴荣华, 宗思光, 王雨虹, 王乐东. 基于舰船尾流激光雷达的Monte Carlo模型及方差消减方法研究. 物理学报, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [11] 梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹. 基于尾流激光雷达的能量对消式大动态接收技术. 物理学报, 2012, 61(11): 110701. doi: 10.7498/aps.61.110701
    [12] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. Rayleigh散射Doppler激光雷达风场反演方法改进. 物理学报, 2012, 61(3): 030702. doi: 10.7498/aps.61.030702
    [13] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [14] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [15] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, 2011, 60(12): 124208. doi: 10.7498/aps.60.124208
    [16] 沈法华, 舒志峰, 孙东松, 王忠纯, 薛向辉, 陈廷娣, 窦贤康. 瑞利散射多普勒激光雷达风场反演方法. 物理学报, 2011, 60(6): 060704. doi: 10.7498/aps.60.060704
    [17] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究. 物理学报, 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [18] 王敏, 胡顺星, 方欣, 汪少林, 曹开法, 赵培涛, 范广强, 王英俭. 激光雷达精确修正对流层目标定位误差. 物理学报, 2009, 58(7): 5091-5097. doi: 10.7498/aps.58.5091
    [19] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [20] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达. 物理学报, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
计量
  • 文章访问数:  6089
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 修回日期:  2017-03-17
  • 刊出日期:  2017-05-05

/

返回文章
返回