搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度倾斜相关测量水平Cn2和横向风速廓线的理论与仿真研究

彭哲 靖旭 侯再红 吴毅

引用本文:
Citation:

梯度倾斜相关测量水平Cn2和横向风速廓线的理论与仿真研究

彭哲, 靖旭, 侯再红, 吴毅

Simulation research and theoretical study on measurement of atmospheric optical turbulence and wind profile using the correlation of gradient-tilt

Peng Zhe, Jing Xu, Hou Zai-Hong, Wu Yi
PDF
导出引用
  • 根据Rytov近似以及泰勒湍流冻结假设,推导出以不同距离的前向散射光为信标的水平路径上梯度倾斜角的相关表达式.基于该表达式,在理论上提出了计算湍流强度与横向风速的新方法,并通过数值仿真对该方法进行了初步验证.结果表明,在5%高斯误差情况下,大气折射结构常数和风速的计算结果与理论真值在整体变化上具有较好的一致性,线性相关系数分别能达到0.8与0.9.该方法能够得到不同湍流与风速条件下的湍流强度廓线以及风速廓线,为反演大气湍流强度以及风速提供了一种新思路.
    In this article, a theoretical method based on the fluctuation of gradient tilt (G-tilt) of active light source is proposed to estimate the horizontal profiles of atmospheric optical turbulence (Cn2) and transverse wind. The G-tilt, related to the average phase gradient, is in the same direction as the average ray direction. And G-tilt angle is considered to be equal to the ratio between the centroid position offset and the focal length. In this method, a theoretical model based on lidar system is set up, in which forward scatter light beams at different distances are taken as beacons. These beacons are detected by a two-aperture telescope. And two light columns, from which we can obtain the information about G-tilt angle, are imaged by these beacons. In order to obtain the turbulence intensity and wind velocity from G-tilt angle with our theoretical model, the differential cross-correlation expressions of G-tilt angle and its derivative are derived in detail. These two expressions are based on the spatial cross-correlation function obtained from Rytov approximation and Taylor's frozen-flow hypothesis for Kolmogorov turbulence. Simultaneously, path weighting functions of Cn2 and wind velocity are derived, and the effects of path weighting functions on the calculation of our method are analyzed. Based on such an analysis, to realize the inversion of turbulence intensity and transverse wind, the matrix transformation algorithm is proposed. We ignore some minimal values of the path weighting functions in our algorithm so that the ill-conditioned matrix is avoided. Besides, numerical simulation is used for preliminarily validating this method. In our simulation, Cn2 varies randomly between 10-15 m-2/3 and 10-14 m-2/3 while wind velocity ranges from -5 m/s to 10 m/s. The sign of the wind velocity represents the direction of wind. According to the simulation results, the horizontal profiles of atmospheric optical turbulence and transverse wind calculated are consistent with their theoretical values no matter whether there exists Gaussian noise. When the ratio between the standard deviation of Gaussian noise we added and the original signal is 0.2, the maximum relative error of logarithmic Cn2 is 3.4%, and the correlation coefficient between the calculated results and theoretical values for Cn2 is 0.8. Besides, the maximum absolute error of wind velocity is 1.82 m/s, and the correlation coefficient between the calculated results and theoretical values for wind velocity is 0.9. Even if the horizontal profiles of atmospheric optical turbulence and transverse wind vary largely, the calculation results of our method remain stable. Therefore, a new idea is provided for measuring atmospheric turbulence and wind.
      通信作者: 靖旭, xujing@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41405014)资助的课题.
      Corresponding author: Jing Xu, xujing@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41405014).
    [1]

    Vernin J, Munoz-Tunon C 1994 Astron. Astrophys. 284 311

    [2]

    Avila R, Cuevas S 2009 Opt. Express 17 10926

    [3]

    Ziad A, Blary F, Borgnino J, Fanteï-Caujolle Y, Aristidi E, Martin F, Lantéri H, Douet R, Bondoux E, Mékarnia D 2013 Astron. Astrophys. 559 L6

    [4]

    Cheng Z, Tan F F, Jing X, He F, Hou Z H 2016 Acta Phys. Sin. 65 074205 (in Chinese) [程知, 谭逢富, 靖旭, 何枫, 侯再红 2016 物理学报 65 074205]

    [5]

    Jing X, Hou Z H, Wu Y, Qin L A, He F, Tan F F 2013 Opt. Lett. 38 3445

    [6]

    Cui C L, Huang H H, Mei H P, Zhu W Y, Rao R Z 2013 High Power Laser Part. Beams 25 1091 (in Chinese) [崔朝龙, 黄宏华, 梅海平, 朱文越, 饶瑞中 2013 强激光与粒子束 25 1091]

    [7]

    Cheng Z, He F, Jing X, Tan F F, Hou Z H 2016 Acta Opt. Sin. 36 401004 (in Chinese) [程知, 何枫, 靖旭, 谭逢富, 侯再红 2016 光学学报 36 401004]

    [8]

    Tichkule S, Muschinski A 2012 Appl. Opt. 51 5272

    [9]

    Schock M, Spillar E J 1998 Opt. Lett. 23 150

    [10]

    Jing X, Hou Z H, Qin L A, He F, Wu Y 2011 Infrared Laser Eng. 40 1352 (in Chinese) [靖旭, 侯再红, 秦来安, 何峰, 吴毅 2011 红外与激光工程 40 1352]

    [11]

    Sasiela R J 2007 Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms (Bellingham: SPIE) pp69-102

    [12]

    Wang T, Clifford S F, Ochs G R 1974 Appl. Opt. 13 2602

    [13]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp368-433 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第368—433页]

    [14]

    Cai D M, Ti P P, Jia P, Wang D, Liu J X 2015 Acta Phys. Sin. 64 224217 (in Chinese) [蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞 2015 物理学报 64 224217]

    [15]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [16]

    Huang K T 2014 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [黄克涛 2006 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

  • [1]

    Vernin J, Munoz-Tunon C 1994 Astron. Astrophys. 284 311

    [2]

    Avila R, Cuevas S 2009 Opt. Express 17 10926

    [3]

    Ziad A, Blary F, Borgnino J, Fanteï-Caujolle Y, Aristidi E, Martin F, Lantéri H, Douet R, Bondoux E, Mékarnia D 2013 Astron. Astrophys. 559 L6

    [4]

    Cheng Z, Tan F F, Jing X, He F, Hou Z H 2016 Acta Phys. Sin. 65 074205 (in Chinese) [程知, 谭逢富, 靖旭, 何枫, 侯再红 2016 物理学报 65 074205]

    [5]

    Jing X, Hou Z H, Wu Y, Qin L A, He F, Tan F F 2013 Opt. Lett. 38 3445

    [6]

    Cui C L, Huang H H, Mei H P, Zhu W Y, Rao R Z 2013 High Power Laser Part. Beams 25 1091 (in Chinese) [崔朝龙, 黄宏华, 梅海平, 朱文越, 饶瑞中 2013 强激光与粒子束 25 1091]

    [7]

    Cheng Z, He F, Jing X, Tan F F, Hou Z H 2016 Acta Opt. Sin. 36 401004 (in Chinese) [程知, 何枫, 靖旭, 谭逢富, 侯再红 2016 光学学报 36 401004]

    [8]

    Tichkule S, Muschinski A 2012 Appl. Opt. 51 5272

    [9]

    Schock M, Spillar E J 1998 Opt. Lett. 23 150

    [10]

    Jing X, Hou Z H, Qin L A, He F, Wu Y 2011 Infrared Laser Eng. 40 1352 (in Chinese) [靖旭, 侯再红, 秦来安, 何峰, 吴毅 2011 红外与激光工程 40 1352]

    [11]

    Sasiela R J 2007 Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms (Bellingham: SPIE) pp69-102

    [12]

    Wang T, Clifford S F, Ochs G R 1974 Appl. Opt. 13 2602

    [13]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) pp368-433 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第368—433页]

    [14]

    Cai D M, Ti P P, Jia P, Wang D, Liu J X 2015 Acta Phys. Sin. 64 224217 (in Chinese) [蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞 2015 物理学报 64 224217]

    [15]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [16]

    Huang K T 2014 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [黄克涛 2006 博士学位论文(合肥: 中国科学院合肥物质科学研究院)]

  • [1] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [2] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [3] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [4] 邓万涛, 赵刚, 夏惠军, 张茂, 杨艺帆. 非相干合成阵列激光倾斜像差校正方法. 物理学报, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [5] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [6] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [7] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [8] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [9] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [10] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [11] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究. 物理学报, 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [12] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性. 物理学报, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [13] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [14] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [15] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [16] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [17] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [18] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] 仓吉, 张逸新. 斜程大气中聚焦J0相关部分相干光束的传输特性. 物理学报, 2009, 58(4): 2444-2450. doi: 10.7498/aps.58.2444
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  4277
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-01
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-05-05

/

返回文章
返回