搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究

张鹤露 秦敏 方武 唐科 段俊 孟凡昊 邵豆 华卉 廖知堂 谢品华

引用本文:
Citation:

基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究

张鹤露, 秦敏, 方武, 唐科, 段俊, 孟凡昊, 邵豆, 华卉, 廖知堂, 谢品华

Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy

Zhang He-Lu, Qin Min, Fang Wu, Tang Ke, Duan Jun, Meng Fan-Hao, Shao Dou, Hua Hui, Liao Zhi-Tang, Xie Pin-Hua
PDF
HTML
导出引用
  • 介绍了435—465 nm波段非相干宽带腔增强吸收光谱(IBBCEAS)技术对碘氧自由基(IO)的定量方法. 为准确获取IO的浓度信息, 对IBBCEAS系统高反镜的镜片反射率、有效腔长及损耗等参数进行了标定. 利用氮气和氦气之间瑞利散射的差异性标定了高反镜的反射率曲线, 在IO吸收峰436.1 nm处镜片反射率R为0.99982, 真空状态下有效吸收光程达到3.83 km. 根据O4的吸收, 修正后系统的有效腔长为60.7 cm. 采用艾伦方差对系统的性能进行评估, 在60 s时间分辨率下, 系统对IO和NO2的探测限(2σ)分别为1.9 pptv和20 pptv (1 pptv (part per trillion by volume) = 10–12). 通过鼓泡法将溶于碘化钾(KI)溶液的碘带出, 并将其光解后与臭氧反应产生稳定浓度的IO样气, 对IO在采样管内的损耗进行了标定, 结果表明IO的损耗可以忽略. 利用IBBCEAS系统对IO的线性进行测定, 在39—530 pptv的浓度范围下IO的测量浓度与配比浓度的相关系数R2为0.99. 进而, 利用该系统对海带排放的碘与臭氧反应生成的IO进行了测量.
    The quantitative method of iodine monoxide radical (IO) using incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) in the 435–465 nm band is described in this paper. In order to obtain the concentration of IO accurately, the parameters such as the mirror reflectivity, effective cavity length and sample loss of the IBBCEAS system are evaluated. Using the difference of Rayleigh scattering between nitrogen and helium, the reflectivity curve of the high-reflection mirror is obtained. The reflectivity R of the mirror at 436.1 nm of the IO absorption peak is about 0.99982, and the effective absorption optical path reaches 3.83 km under vacuum condition. According to the absorption of O4, the effective cavity length of the modified system is 60.7 cm. The Allan deviation is used to evaluate the performance of the system, and the standard deviation is used to analyze the detection sensitivity of the system. When the time resolution is 60 s, the detection sensitivity (2σ) of the system for IO and NO2 are 1.9 pptv and 20 pptv (part per trillion by volume), respectively. The iodine dissolved in potassium iodide (KI) solution is taken out by the bubbling method and react with ozone after photolysis to produce a stable concentration of IO sample gas. The IO loss in the sampling tube is calibrated, and the results show that the sampling tube has no significant effect on the IO loss. The IBBCEAS system is used to determine the linearity of IO, and the correlation coefficient R2 between the measured concentration of IO and the proportioned concentration in a concentration range from 39 to 530 pptv is 0.99. The IO produced by the reaction of iodine released from kelp with ozone is measured.
      通信作者: 秦敏, mqin@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41875154, U19A2044)和安徽省重点研究与开发计划(批准号: 202104i07020010)资助的课题
      Corresponding author: Qin Min, mqin@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41875154, U19A2044) and the Anhui Provincial Key R&D Program, China (Grant No. 202104i07020010)
    [1]

    Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar

    [2]

    Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar

    [3]

    Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar

    [4]

    Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar

    [5]

    Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar

    [6]

    Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar

    [7]

    Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar

    [8]

    Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar

    [9]

    Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar

    [10]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [11]

    Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar

    [12]

    Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar

    [13]

    Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [15]

    Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar

    [16]

    Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar

    [17]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar

    [18]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar

    [19]

    Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar

    [20]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar

    [21]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar

    [23]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar

    [24]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [25]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar

    [26]

    Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar

    [27]

    覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002

    Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002

    [28]

    刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar

    Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar

  • 图 1  基于蓝光LED的非相干宽带腔增强吸收光谱系统组成示意图

    Fig. 1.  Schematic of the incoherent broadband cavity-enhanced absorption spectrometer based on blue LED.

    图 2  (a)镜片反射率标定曲线, 黑线为镜片反射率曲线, 红线为氦气谱, 蓝线为氮气谱; (b) 435—465 nm波段主要吸收成分IO, NO2, H2O, O4的吸收截面

    Fig. 2.  (a) Reflectivity calibration of the mirror reflectivity. The blue and red curves represent intensity spectrum when the cavity is filled with N2 and He, respectively. The black line represents derived mirror reflectivity curve. (b) Cross sections of NO2 (sky blue line), H2O (grey line), IO (red line) and O4 (black line) in the 435–465 nm band.

    图 3  依次关闭和开启N2吹扫时测量的O2浓度时间序列图

    Fig. 3.  Temporal variation of O2 concentration with and without N2 purge gas.

    图 4  IBBCEAS系统的评估 (a)和(b)分别是测量N2背景下光谱反演的NO2和IO的浓度时间序列; (c)和(d)分别是NO2和IO的艾伦方差及标准偏差随平均时间的变化曲线

    Fig. 4.  Evaluation of the performance of IBBCEAS instrument. Panels (a) and (b) are the time series of NO2 and IO concentrations with 3 s acquisition time when the cavity is filled with N2. Panels (c) and (d) are the variation curves of Allan and standard deviation plots for NO2 and IO with mean time, respectively

    图 5  三套系统测量的NO2浓度时间序列图, 黑线为中心波长为436 nm的IBBCEAS系统的NO2浓度时间序列, 红线为中心波长为368 nm的IBBCEAS系统的NO2浓度时间序列, 蓝线为LP-DOAS系统的NO2浓度时间序列

    Fig. 5.  Comparison of NO2 concentration measured by three different instruments. The black, red and blue dotted lines denote the NO2 concentrations measured by IBBCEAS (center wavelength: 368 nm and 436 nm) and LP-DOAS, respectively.

    图 6  (a) IBBCEAS (中心波长368 nm)和IBBCEAS (中心波长436 nm)测量的NO2浓度的相关性; (b) IBBCEAS (中心波长436 nm)和LP-DOAS测量的NO2浓度的相关性

    Fig. 6.  (a) Correlation analysis of NO2 concentrations measured by two IBBCEAS instruments (center wavelength: 368 nm and 436 nm); (b) correlation of NO2 concentrations measured by IBBCEAS instrument (center wavelength: 436 nm) and LP-DOAS.

    图 7  实验室IO的测量示意图

    Fig. 7.  Schematic diagram of laboratory IO measurement system.

    图 8  IO采样损耗标定, 黑点表示采用10 m PFA采样管测得的IO, 红点表示采用3 m PFA采样管测得的IO

    Fig. 8.  Measurements of IO loss in the sampling tube, black dots correspond to the IO measured with the 10 m PFA sample tube, red dots correspond to the IO measured with the 3 m PFA sample tube.

    图 9  (a)线性实验下IO的浓度时间序列图; (b)测量IO的浓度与配比浓度的相关性

    Fig. 9.  (a) Different concentrations of IO measured by IBBCEAS; (b) the correlation analysis between the average of these concentration gradients and the normalized mixing ratio.

    图 10  随时间变化的不同浓度的IO反演实例, 最底层是反应时间为137.5 min的光谱反演的拟合残差

    Fig. 10.  Example of retrieved absorption spectra of different IO concentrations varying with time, the fitting residuals of spectral retrieved with reaction time of 137.5 min is showed in the bottom of the figure.

    图 11  (a) IO的浓度时间序列图, 红色三角形代表海带的Fv/Fm值; (b) NO2的浓度时间序列图, 阴影部分面积表示测量浓度的2σ拟合误差

    Fig. 11.  (a) Time series of IO concentrations measured by the IBBCEAS. The red triangle denote the Fv/Fm of luminaria; (b) time series of NO2 concentrations, and the shadow area represent the 2σ deviation error.

    表 1  相关IO测量仪器检测限和时间分辨率对比

    Table 1.  Comparison of detection limit and time resolution of correlated IO measuring instruments.

    系统时间分
    辨率
    检测限(2σ)参考文献
    LP-DOAS60 s1.25 pptvCommane等[2] (2011)
    MAX-DOAS60 s1.3 × 1013 molecule·cm–2Coburn等[6] (2011)
    LIF300 s0.6 pptvGravestocket等[8] (2010)
    CRDS30 s10 pptvWada等[9] (2007)
    ML-CEAS300 s20 ppqvGrilli等[10] (2012)
    IBBCEAS60 s30 pptvVaughan等[14] (2008)
    IBBCEAS60 s4.4 pptvAshu-Ayem等[12] (2012)
    IBBCEAS22 min0.6 pptvThalman等[13] (2010)
    IBBCEAS60 s1.9 pptvThis work
    下载: 导出CSV
  • [1]

    Seitz K, Buxmann J, Pohler D, Sommer T, Tschritter J, Neary T, O'Dowd C, Platt U 2010 Atmos. Chem. Phys. 10 2117Google Scholar

    [2]

    Commane R, Seitz K, Bale C S E, Bloss W J, Buxmann J, Ingham T, Platt U, Pöhler D, Heard D E 2011 Atmos. Chem. Phys. 11 6721Google Scholar

    [3]

    Furneaux K L, Whalley L K, Heard D E, Atkinson H M, Bloss W J, Flynn M J, Gallagher M W, Ingham T, Kramer L, Lee J D, Leigh R, McFiggans G B, Mahajan A S, Monks P S, Oetjen H, Plane J M C, Whitehead J D 2010 Atmos. Chem. Phys. 10 3645Google Scholar

    [4]

    Gómez Martín J C, Mahajan A S, Hay T D, Prados-Román C, Ordóñez C, MacDonald S M, Plane J M C, Sorribas M, Gil M, Paredes Mora J F, Agama Reyes M V, Oram D E, Leedham E, Saiz-Lopez A 2013 J. Geophys. Res.: Atmospheres 118 887Google Scholar

    [5]

    Mahajan A S, Shaw M, Oetjen H, Hornsby K E, Carpenter L J, Kaleschke L, Tian-Kunze X, Lee J D, Moller S J, Edwards P, Commane R, Ingham T, Heard D E, Plane J M C 2010 J. Geophys. Res. 115 D20303Google Scholar

    [6]

    Coburn S, Dix B, Sinreich R, Volkamer R 2011 Atmospheric Measurement Techniques 4 2421Google Scholar

    [7]

    Alicke B, Hebestreit K, Stutz J, Platt U 1999 Nature 397 572Google Scholar

    [8]

    Gravestock T J, Blitz M A, Heard D E 2010 Phys. Chem. Chem. Phys. 12 823Google Scholar

    [9]

    Wada R, Beames J M, Orr-Ewing A J 2007 J. Atmos. Chem. 58 69Google Scholar

    [10]

    Grilli R, Mejean G, Kassi S, Ventrillard I, Abd-Alrahman C, Romanini D 2012 Environ. Sci. Technol. 46 10704Google Scholar

    [11]

    Whalley L K, Furneaux K L, Gravestock T, Atkinson H M, Bale C S E, Ingham T, Bloss W J, Heard D E 2007 J. Atmos. Chem. 58 19Google Scholar

    [12]

    Ashu-Ayem E R, Nitschke U, Monahan C, Chen J, Darby S B, Smith P D, O'Dowd C D, Stengel D B, Venables D S 2012 Environ. Sci. Technol. 46 10413Google Scholar

    [13]

    Thalman R, Volkamer R 2010 Atmospheric Measurement Techniques 3 1797Google Scholar

    [14]

    Vaughan S, Gherman T, Ruth A A, Orphal J 2008 Phys. Chem. Chem. Phys. 10 4471Google Scholar

    [15]

    Barbero A, Blouzon C, Savarino J, Caillon N, Dommergue A, Grilli R 2020 Atmospheric Measurement Techniques 13 4317Google Scholar

    [16]

    Wei N, Hu C, Zhou S, Ma Q, Mikuska P, Vecera Z, Gai Y, Lin X, Gu X, Zhao W, Fang B, Zhang W, Chen J, Liu F, Shan X, Sheng L 2017 RSC Adv. 7 56779Google Scholar

    [17]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K, Tang K, Liang S, Meng F, Hu Z, Xie P, Liu W, Häsler R 2018 Atmospheric Measurement Techniques 11 4531Google Scholar

    [18]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu Z R, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sinc. 61 140703Google Scholar

    [19]

    Spietz P, Martin J C G, Burrows J P 2005 J. Photoch. Photobio. A 176 50Google Scholar

    [20]

    Voigt S, Orphal J, Burrows J P 2002 J. Photoch. Photobio. A 149 1Google Scholar

    [21]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Benner D C, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Muller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transf. 130 4Google Scholar

    [22]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmospheric Chem. Phys. 8 7779Google Scholar

    [23]

    Liang S, Qin M, Xie P, Duan J, Fang W, He Y, Xu J, Liu J, Li X, Tang K, Meng F, Ye K, Liu J, Liu W 2019 Atmospheric Measurement Techniques 12 2499Google Scholar

    [24]

    Thalman R, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar

    [25]

    Axson J L, Washenfelder R A, Kahan T F, Young C J, Vaida V, Brown S S 2011 Atmospheric Chem. Phys. 11 11581Google Scholar

    [26]

    Tang K, Qin M, Fang W, Duan J, Meng F, Ye K, Zhang H, Xie P, He Y, Xu W, Liu J, Liu W 2020 Atmospheric Measurement Techniques 13 6487Google Scholar

    [27]

    覃志松, 赵南京, 殷高方, 石朝毅, 甘婷婷, 肖雪, 段静波, 张小玲, 陈双, 刘建国, 刘文清 2017 光学学报 37 0730002

    Qin Z S, Zhao N J, Yin G F, Shi C Y, Gan T T, Xiao X, Duan J B, Zhang X L, Chen S, Liu J G, Liu W Q 2017 Acta Opt. Sin. 37 0730002

    [28]

    刘晶, 刘文清, 赵南京, 张玉均, 马明俊, 殷高方, 戴庞达, 王志刚, 王春龙, 段静波, 余晓娅, 方丽 2013 光谱学与光谱分析 33 2443Google Scholar

    Liu J, Liu W, Zhao N, Zhang Y, Ma M, Yin G, Dai P, Wang Z, Wang C, Duan J, Yu X, Fang L 2013 Spectrosc Spect Anal. 33 2443Google Scholar

  • [1] 张雅婧, 李凡, 雷照康, 王铭浩, 王成会, 莫润阳. 非球形气泡的超声定量检测. 物理学报, 2023, 72(3): 034301. doi: 10.7498/aps.72.20222074
    [2] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量. 物理学报, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [3] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [4] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量. 物理学报, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [5] 朱国梁, 胡仁志, 谢品华, 陈浩, 秦敏, 方武, 王丹, 杏兴彪. 基于差分光学吸收光谱方法的OH自由基定标系统研究. 物理学报, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [6] 胡仁志, 王丹, 谢品华, 凌六一, 秦敏, 李传新, 刘建国. 二极管激光腔衰荡光谱测量大气NO3自由基. 物理学报, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [7] 郭连波, 郝荣飞, 郝中骐, 李阔湖, 沈萌, 任昭, 李祥友, 曾晓雁. 激光诱导AlO自由基B2+X2+跃迁光谱研究. 物理学报, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [8] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [9] 朱遵略, 郎建华, 乔浩. AsCl自由基的基态及激发态的势能函数与光谱常数的研究. 物理学报, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [10] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [11] 张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究. 物理学报, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [12] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究. 物理学报, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术. 物理学报, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [14] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] 周晓国, 李全新, 张群, 俞书勤, 苏宜, 陈从香, 马兴孝. SF2自由基4s和C态的共振增强多光子电离研究. 物理学报, 2000, 49(4): 683-686. doi: 10.7498/aps.49.683
    [16] 金 瑾, 陈 旸, 裴林森, 胡长进, 马兴孝, 陈从香. 射流冷却AlO自由基B2Σ+—X2Σ+光谱研究. 物理学报, 2000, 49(9): 1689-1691. doi: 10.7498/aps.49.1689
    [17] 李全新, 张 群, 束继年, 徐业平, 宋钦华, 陈从香, 俞书勤, 马兴孝. CF自由基二光子共振增强多光子电离研究:5p Rydberg态观测与分析. 物理学报, 1999, 48(3): 446-452. doi: 10.7498/aps.48.446
    [18] 李全新, 束继年, 张 群, 徐海峰, 俞书勤, 陈从香, 马兴孝. 332—362nm范围内CF2Cl自由基的共振增强多光子电离研究. 物理学报, 1998, 47(9): 1470-1476. doi: 10.7498/aps.47.1470
    [19] 陈旸, 陆庆正, 马兴孝, 崔执凤, 赵献章, 陆同兴. 气相CCl2自由基的发射光谱. 物理学报, 1992, 41(10): 1582-1589. doi: 10.7498/aps.41.1582
    [20] 唐福海, 唐淑桃, 李维城. 石油铝氧触媒内白金的光谱定量分析. 物理学报, 1959, 15(6): 331-336. doi: 10.7498/aps.15.331
计量
  • 文章访问数:  5020
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-10
  • 修回日期:  2021-04-07
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回