搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车载多轴差分吸收光谱探测对流层NO2分布研究

吴丰成 李昂 谢品华 陈浩 凌六一 徐晋 牟福生 张杰 申进朝 刘建国 刘文清

引用本文:
Citation:

车载多轴差分吸收光谱探测对流层NO2分布研究

吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清

Dectection and distribution of tropospheric NO2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy

Wu Feng-Cheng, Li Ang, Xie Pin-Hua, Chen Hao, Ling liu-Yi, Xu Jin, Mou Fu-Sheng, Zhang Jie, Shen Jin-Chao, Liu Jian-Guo, Liu Wen-Qing
PDF
导出引用
  • 对流层NO2垂直柱浓度在水平分布上具有较大不均匀性, 研究对流层NO2分布特征对于研究污染的形成具有重要作用. 本文在国内首次采用车载多轴差分吸收光谱技术探测对流层NO2的水平分布, 着重研究了基于车载移动平台上的多轴差分吸收光谱技术反演对流层NO2垂直柱浓度的方法. 采用低阶多项式拟合扣除夫琅禾费参考谱和平流层对对流层NO2的贡献, 反演得到移动平台上对流层NO2垂直柱浓度. 结合大气辐射传输模型, 通过设置不同气溶胶光学厚度及层高、NO2层高、方位角等对反演误差进行分析, 得出对流层NO2垂直柱浓度的总误差小于25%. 在合肥开展观测实验, 获取观测时间段内合肥市对流层NO2垂直柱浓度的水平分布特征. 并将观测结果与OMI卫星过顶数据比对, 在洁净和车载观测点较多的像元内, 两者结果符合较好; 在污染区域, 两者结果有一定差别. 研究显示, 采用车载多轴差分吸收光谱技术能较好的探测区域对流层NO2的分布特征, 这对模型验证、卫星校验及研究输送过程具有重要意义.
    The distribution of tropospheric NO2 vertical column desity shows a characteristic of inhomogeneity. Such information is important for the study of pollution formation. A horizontal distribution of tropospheric NO2 vertical column desity based on mobile MAX-DOAS is studied in this paper, especially for a retrieval method of tropospheric NO2 with mobile MAX-DOAS. Using a low-order polynomial fitting can remove the conbtibuiton of the Frauenhofer and stratosphere, and then the tropospheric NO2 vertical column desity can be detected on the mobile platform. The total tropospheric NO2 error is lower than 25% with the model simulation by setting the different aerosol optical densities, aerosol layer heights, NO2 layer heights and azimuths. The mobile MAX-DOAS system is designed by ourself and the pattern of scanning sequentially is selected for this system. On the other hand, using electronic compass sensors, inclinometer, and software control method, the system can determine the elevation, the azimuth angle drift due to unstability of mobile platform during measurement, as well as the elevation and azimuth angle acquisition exactly, and automatically refer to the north and reduce measurement errors. In addition, the observation of tropospheric NO2 is carried out in Hefei city based on the mobile MAX-DOAS. The horizontal distribution of tropospheric NO2 across Hefei ring expressway and the 2nd ring in Hefei city is obtained during the measurement period. Furthermore, the tropospheric NO2 vertical column density from the mobile DOAS is compared with those from ozone monitoring instrument (OMI). Three pixels are covered by OMI in Hefei city during the measurement period of mobile MAX-DOAS, reprsenting “clean area”, “more mobile MAX-DOAS data area” and “polluted area” respectivley. A good agreement is found for “clean area” and the pixel including more data of mobile MAX-DOAS with 3.34×1015 molec/cm2 from mobile MAX-DOAS and 3.00×1015 molec/cm2 from OMI for “clean area” as well as 5.10×1015 molec/cm2 from mobile MAX-DOAS and 5.60×1015 molec/cm2 from OMI for “more mobile MAX-DOAS data area”. While there is a small difference between the two results for polluted area with 9.16×1015 molec/cm2 from mobile MAX-DOAS and 4.50×1015 molec/cm2 from OMI. The unsensitivity of OMI to sources near surface may be accounted for by this difference. These results indicate that the mobile MAX-DOAS can well detect the regional distribution of tropospheric trace gas rapidly. This is important for validation of the model and satellite and study of transport process.
    • 基金项目: 国家高技术研究发展计划(批准号:2014AA06A508,2014AA06A511)、国家自然科学基金(批准号:41305139,41405033)、安徽省自然科学基金(批准号:1408085QD75)、安徽省科技攻关计划项目(批准号:1301022083)和环保公益项目(批准号:201409006)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2014AA06A508, 2014AA06A511), the National Natural Science Foundation of China (Grant Nos. 41305139, 41405033), the Anhui Natural Science Foundation, China (Grant No. 1408085QD75), the Scientific and Technological Project of Anhui Province, China (Grant No. 1301022083), and the Public Industry Sponsored by Ministry of Environmental Protection of PRC (Grant No. 201409006).
    [1]

    Finlayson-Pitts B J, Pitts J N 1999 Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications, San Diego, USA, Academic Press

    [2]

    Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim Y J, Lee H, Li A, Si F, Xu J, Xie P H, Liu W Q, Dzhola A, Postylyakov O, Ivanov V, Grechko E, Terpugova S, Panchenko M 2014 Atmos. Chem. Phys. Discuss. 14 2883

    [3]

    Jang M, Kamens R M 2001 Environ. Sci. Technol. 35 3626

    [4]

    World Health Organization:2006, Geneva, Switzerland

    [5]

    Zhang Q, David G S, He K B, Wang Y, Richter A, Burrows J, Uno I, Jang Carey J, Chen D, Yao Z, Lei Y 2007 J. Geophys. Res. 112 D22306

    [6]

    Mohr C, Richter R, De Carlo P F, Prevot A S H, Baltensperger U 2011 Atmos. Chem. Phys. 11 7465

    [7]

    Pearl River Delta Regional Air Quality Monitoring Network A Report of Monitoring Results in 2006, 2006, Guangdong Provincial Environmental Protection Monitoring Centre and Environmental Protection Department, HKSAR (in Chinese) [粤港珠三角区域空气监控网络 2006 年监测结果报告, 广东省环境保护监测中心站和香港特别行政区环境保护署, 2006]

    [8]

    Ren X B, Wang Y S 2009 Bulletin of Chinese Academy of Sciences 24 194 (in Chinese) [任小波, 王跃思 2009 中国科学院院刊 24 194]

    [9]

    Han K M, Lee C K, Kim J, Song C H 2011 Atmos Environ 45 2962

    [10]

    Li J, Wang Z, Wang X, Yamaji K, Takigawa M, Kanaya Y, Pochanart P, Liu Y, Irie H, Hu B, Tanimoto H, Akimoto H 2011 Atmos Environ 45 1817

    [11]

    Wang M, Zhu T, Zhang J P, Zhang Q H, Lin W W, Li Y, Wang Z F 2011 Atmos. Chem. Phys. 11 11631

    [12]

    Wang K, Jiang H, Zhang X, Zhou G 2011 International Journal of Remote Sensing 32 815

    [13]

    Georgoulias A K, Kourtidis K A, Buchwitz M, Schneising O, Burrows J P 2011 International Journal of Remote Sensing 32 787

    [14]

    Honninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231

    [15]

    Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Optica Sinica. 31 1101007 (in Chinese) [周海金, 刘文清, 司福褀, 谢品华, 徐晋, 窦科 2011 光学学报 31 1101007]

    [16]

    Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 物理学报 62 054206]

    [17]

    Irie H, Kanaya Y, Akimoto H, Iwabuchi H, Shimizu A, Aoki K 2009 Atmos. Chem. Phys. 9 2741

    [18]

    Halla J D, Wagner T, Beirle S, Brook J R, Hayden K L, OBrien J M, Ng A, Majonis D, Wenig M O, McLaren R 2011 Atmos. Chem. Phys. 11 12475

    [19]

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福褀, 李昂, 刘文清 2012 物理学报 61 024204]

    [20]

    Ibrahim O, Shaiganfar R, Sinreich R, Stein T, Platt U, Wagner T 2010 Atmos. Meas. Tech. 3 709

    [21]

    Shaiganfar R, Beirle S, Sharma M, Chauhan A, Singh R P, Wagner T 2011 Atmos. Chem. Phys. 11 10871

    [22]

    Wu F C, Xie P H, Li A, Chan K L, Hartl A, Wang Y, Si F Q, Zeng Y, Qin M, Xu J, Liu J G, Liu W Q, Wenig M 2013 Atmos. Meas. Tech. 6 2277

    [23]

    Marquard L, Wagner T, Platt U 2000 J. Geophys. Res. 105 1315

    [24]

    Kraus S.:DOASIS, 2006 PhD-thesis, University of Mannheim, Shaker Verlag, Heidelberg, Germany

    [25]

    Van Roozendael C F 2001 IASB/BIRA, Brussel, Belgium, 2001

    [26]

    Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705]

    [27]

    Levelt P F, van den Oord G H J, Dobber M R 2006 IEEE T. Geosci. Remote 44 1093

  • [1]

    Finlayson-Pitts B J, Pitts J N 1999 Chemistry of the Upper and Lower Atmosphere:Theory, Experiments, and Applications, San Diego, USA, Academic Press

    [2]

    Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim Y J, Lee H, Li A, Si F, Xu J, Xie P H, Liu W Q, Dzhola A, Postylyakov O, Ivanov V, Grechko E, Terpugova S, Panchenko M 2014 Atmos. Chem. Phys. Discuss. 14 2883

    [3]

    Jang M, Kamens R M 2001 Environ. Sci. Technol. 35 3626

    [4]

    World Health Organization:2006, Geneva, Switzerland

    [5]

    Zhang Q, David G S, He K B, Wang Y, Richter A, Burrows J, Uno I, Jang Carey J, Chen D, Yao Z, Lei Y 2007 J. Geophys. Res. 112 D22306

    [6]

    Mohr C, Richter R, De Carlo P F, Prevot A S H, Baltensperger U 2011 Atmos. Chem. Phys. 11 7465

    [7]

    Pearl River Delta Regional Air Quality Monitoring Network A Report of Monitoring Results in 2006, 2006, Guangdong Provincial Environmental Protection Monitoring Centre and Environmental Protection Department, HKSAR (in Chinese) [粤港珠三角区域空气监控网络 2006 年监测结果报告, 广东省环境保护监测中心站和香港特别行政区环境保护署, 2006]

    [8]

    Ren X B, Wang Y S 2009 Bulletin of Chinese Academy of Sciences 24 194 (in Chinese) [任小波, 王跃思 2009 中国科学院院刊 24 194]

    [9]

    Han K M, Lee C K, Kim J, Song C H 2011 Atmos Environ 45 2962

    [10]

    Li J, Wang Z, Wang X, Yamaji K, Takigawa M, Kanaya Y, Pochanart P, Liu Y, Irie H, Hu B, Tanimoto H, Akimoto H 2011 Atmos Environ 45 1817

    [11]

    Wang M, Zhu T, Zhang J P, Zhang Q H, Lin W W, Li Y, Wang Z F 2011 Atmos. Chem. Phys. 11 11631

    [12]

    Wang K, Jiang H, Zhang X, Zhou G 2011 International Journal of Remote Sensing 32 815

    [13]

    Georgoulias A K, Kourtidis K A, Buchwitz M, Schneising O, Burrows J P 2011 International Journal of Remote Sensing 32 787

    [14]

    Honninger G, von Friedeburg C, Platt U 2004 Atmos. Chem. Phys. 4 231

    [15]

    Zhou H J, Liu W Q, Si F Q, Xie P H, Xu J, Dou K 2011 Acta Optica Sinica. 31 1101007 (in Chinese) [周海金, 刘文清, 司福褀, 谢品华, 徐晋, 窦科 2011 光学学报 31 1101007]

    [16]

    Wang T, Wang P C, Yu H, Zhang X Y, Zhou B, Si F Q, Wang S S, Bai W G, Zhou H J, Zhao H 2013 Acta Phys. Sin. 62 054206 (in Chinese) [王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒 2013 物理学报 62 054206]

    [17]

    Irie H, Kanaya Y, Akimoto H, Iwabuchi H, Shimizu A, Aoki K 2009 Atmos. Chem. Phys. 9 2741

    [18]

    Halla J D, Wagner T, Beirle S, Brook J R, Hayden K L, OBrien J M, Ng A, Majonis D, Wenig M O, McLaren R 2011 Atmos. Chem. Phys. 11 12475

    [19]

    Xu J, Xie P H, Si F Q, Li A, Liu W Q 2012 Acta Phys. Sin. 61 024204 (in Chinese) [徐晋, 谢品华, 司福褀, 李昂, 刘文清 2012 物理学报 61 024204]

    [20]

    Ibrahim O, Shaiganfar R, Sinreich R, Stein T, Platt U, Wagner T 2010 Atmos. Meas. Tech. 3 709

    [21]

    Shaiganfar R, Beirle S, Sharma M, Chauhan A, Singh R P, Wagner T 2011 Atmos. Chem. Phys. 11 10871

    [22]

    Wu F C, Xie P H, Li A, Chan K L, Hartl A, Wang Y, Si F Q, Zeng Y, Qin M, Xu J, Liu J G, Liu W Q, Wenig M 2013 Atmos. Meas. Tech. 6 2277

    [23]

    Marquard L, Wagner T, Platt U 2000 J. Geophys. Res. 105 1315

    [24]

    Kraus S.:DOASIS, 2006 PhD-thesis, University of Mannheim, Shaker Verlag, Heidelberg, Germany

    [25]

    Van Roozendael C F 2001 IASB/BIRA, Brussel, Belgium, 2001

    [26]

    Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705 (in Chinese) [王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705]

    [27]

    Levelt P F, van den Oord G H J, Dobber M R 2006 IEEE T. Geosci. Remote 44 1093

  • [1] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量. 物理学报, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [2] 周丽丽, 胡欣悦, 穆中林, 张蕤, 郑悦. 任意方向电偶极子在水平分层受限空间中的远区辐射场求解. 物理学报, 2022, 71(20): 200301. doi: 10.7498/aps.71.20220545
    [3] 任红梅, 李昂, 胡肇焜, 黄业园, 徐晋, 谢品华, 钟鸿雁, 李晓梅. 基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布. 物理学报, 2020, 69(20): 204204. doi: 10.7498/aps.69.20200588
    [4] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [5] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [6] 王杨, Wagner Thomas, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议. 多轴差分吸收光谱技术的云和气溶胶类型鉴别方法研究. 物理学报, 2014, 63(11): 110708. doi: 10.7498/aps.63.110708
    [7] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [8] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [9] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究. 物理学报, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [10] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [11] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度. 物理学报, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [12] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [13] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [14] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [15] 王焯如, 周斌, 王珊珊, 杨素娜. 应用多光路主动差分光学吸收光谱仪观测大气污染物的空间分布. 物理学报, 2011, 60(6): 060703. doi: 10.7498/aps.60.060703
    [16] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [17] 司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究. 物理学报, 2010, 59(4): 2867-2872. doi: 10.7498/aps.59.2867
    [18] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数. 物理学报, 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [19] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [20] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究. 物理学报, 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
计量
  • 文章访问数:  5878
  • PDF下载量:  7086
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-12-01
  • 刊出日期:  2015-06-05

/

返回文章
返回