搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于标准样品回归算法和腔增强光谱的NO2检测方法

卞晓鸽 周胜 张磊 何天博 李劲松

引用本文:
Citation:

基于标准样品回归算法和腔增强光谱的NO2检测方法

卞晓鸽, 周胜, 张磊, 何天博, 李劲松

NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy

Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song
PDF
HTML
导出引用
  • 腔增强吸收光谱技术作为一种高灵敏的痕量气体测量技术, 其吸收光谱的浓度反演是极其关键的环节. 为消除因吸收截面和仪器响应函数的不确定性引入的测量误差, 本文提出了一种基于标准样品吸收光谱的浓度回归算法, 该方法在浓度反演过程上进行优化, 采用标准气体样品吸收光谱直接拟合未知浓度气体吸收光谱. 采用中心波长在440 nm处的蓝色发光二极管(LED)作为光源, 建立了一套非相干光腔增强吸收光谱技术(IBBCEAS)系统, 实测腔镜反射率为99.915%, 利用NO2气体的实测吸收光谱对该算法的有效性进行了验证. 与常规吸收截面回归算法比较, 结果表明本文提出的标准样品回归算法具有显著的优越性, 测量精度提升约4倍. 利用改进的算法结合标准样品配制的多个NO2气体对实验系统性能进行了深入评估, 测量结果与理论值具有很好的一致性. Allan方差分析显示在积分时间为360 s的情况下, NO2检测限可达到5.3 ppb (1 ppb = 10–9).
    Cavity-enhanced absorption spectroscopy is a highly sensitive trace gas measurement technology, and the algorithm for retrieving gas concentrations is critical. The absorption cross-section is traditionally used to retrieve the concentration. However, the absorption cross-section used in the fitting process is affected not only by the response function of the instrument and the light source, but also by temperature and pressure. The uncertainty of the absorption cross-section will influence the accuracy of the result. Therefore, in order to eliminate the measurement error introduced by the uncertainty of the absorption cross-section and the instrument response function, a concentration regression algorithm based on the absorption spectrum of the standard sample is proposed. The process of concentration inversion is optimized. The absorption spectrum of standard gas is used to fit the unknown spectrum. In order to verify the effectiveness of the algorithm, the incoherent cavity enhanced absorption spectroscopy (IBBCEAS) system based on a blue light-emitting diode (LED) operating at 440 nm is established to analyze the absorption spectrum of NO2; and the fitting effect, measurement accuracy and stability are compared with the counter parts from the traditional absorption cross-section method. In the experiment, the measured reflectance of the cavity mirror is 99.915%. Compared with the conventional absorption cross-section regression algorithm, the standard sample regression algorithm proposed in this paper shows good results, in which the measurement accuracy is increased by about quadruple. The Allan deviation shows that a detection limit of 5.3 ppb can be achieved at an integration time of 360 s. Finally, the performance of the experimental system is evaluated by measuring the NO2 with different concentrations prepared by standard samples. The result shows good agreement with the theoretical value, which indicates that the improved spectral analysis algorithm is feasible and reliable for gas detection. This method can be used not only to measure NO2, but also to detect other gases, which shows great potential applications in monitoring the industrial emissions, atmospheric chemistry and exhaled breath analysis.
      通信作者: 周胜, optzsh@ahu.edu.cn ; 李劲松, ljs0625@126.com
    • 基金项目: 国家自然科学基金(批准号: 61905001, 41875158, 61705001, 61705002, 61675005)、国家重点研发计划(批准号: 2016YFC0302202)、安徽省自然科学基金(批准号: 1908085QF276, 1808085QF198, 1508085MF118)和安徽省高校自然科学项目(批准号: KJ2018A0034)资助的课题.
      Corresponding author: Zhou Sheng, optzsh@ahu.edu.cn ; Li Jin-Song, ljs0625@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905001, 41875158, 61705001, 61705002, 61675005), the National Key R&D Project of China (Grant No. 2016YFC0302202), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1908085QF276, 1808085QF198, 1508085MF118), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2018A0034)
    [1]

    段秋宴 2019 环境与发展 31 155Google Scholar

    Duan Q Y 2019 Environ. Dev. 31 155Google Scholar

    [2]

    韩荦, 夏滑, 董凤忠, 张志荣, 庞涛, 孙鹏帅, 吴边, 崔小娟, 李哲, 余润磬 2018 中国激光 45 43Google Scholar

    Han L, Xia H, Dong F Z, Zhang Z R, Pang T, Sun P S, Wu B, Cui X J, Li Z, Yu R Q 2018 Chin. J. Lasers 45 43Google Scholar

    [3]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y H, Brown S S 2015 Atmos. Meas. Tech. 9 11209Google Scholar

    [4]

    Engeln R, Berden G, Peeters R, Meijei G 1998 Rev. Sci. Instrum. 69 3763Google Scholar

    [5]

    O’keefe A 1998 Chem. Phys. Lett. 293 331Google Scholar

    [6]

    Fiedler S E, Hoheisel G, Ruth A A, Hese A 2003 Chem. Phys. Lett. 382 447Google Scholar

    [7]

    Wu T, Zha Q Z, Chen W D, Xu Z, Wang T, He X D 2014 Atmos. Environ. 95 544Google Scholar

    [8]

    Nakashima Y, Sadanaga Y 2017 Anal. Sci. 33 519Google Scholar

    [9]

    段俊, 秦敏, 方武, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2016 光谱学与光谱分析 36 466Google Scholar

    Duan J, Qin M, Fang W, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2016 Spectrosc. Spect. Anal. 36 466Google Scholar

    [10]

    Liu J W, Li X, Yang Y M, Wang H C, Wu Y S, Lu X W, Chen M D, Hu J L, Fan X B, Zeng L M, Zhang Y H 2019 Atmos. Meas. Tech. 12 4439Google Scholar

    [11]

    Jordan N, Ye C Z, Ghosh S, Washenfelder R A, Brown S S, Osthoff H D 2019 Atmos. Meas. Tech. 12 1277Google Scholar

    [12]

    Jodan N, Osthoff H D 2020 Atmos. Meas. Tech. 13 285Google Scholar

    [13]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [14]

    Liang S X, Qin M, Xie P H, Duan J, Fang W, He Y B, Xu J, Liu J W, Li X, Tang K, Meng F H, Ye K D, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [15]

    吴涛, 陈卫东, 何兴道 2015 光谱学与光谱分析 35 2989Google Scholar

    Wu T, Chen W D, He X D 2015 Spectrosc. Spect. Anal. 35 2989Google Scholar

    [16]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703Google Scholar

    [17]

    Thalman R, Zarzana K J, Tolbert M A, Volkamer R 2014 J. Quant. Spectrosc. Radiat. Transfer 147 171Google Scholar

    [18]

    Meng L S, Wang G X, Augustin P, Fourmentin M, Gou Q, Fertein E, Ba T N, Coeur C, Tomas A, Chen W D 2020 Opt. Lett. 45 1611Google Scholar

    [19]

    庞学霞, 邓泽超, 贾鹏英, 梁伟华 2011 物理学报 60 125201Google Scholar

    Pang X X, Deng Z C, Jia P Y, Liang W H 2011 Acta Phys. Sin. 60 125201Google Scholar

    [20]

    赵士彬 2018 环境与发展 30 140Google Scholar

    Zhao S B 2018 Environ. Dev. 30 140Google Scholar

    [21]

    崔厚欣, 杜振辉, 陈文亮, 齐汝宾, 徐可欣 2008 天津大学学报 41 1162

    Cui H X, Du Z H, Chen W L, Qi R B, Xu K X 2008 J. Tianjin Univ. 41 1162

    [22]

    郑海明, 蔡小舒 2007 动力工程 27 130

    Zheng H M, Cai X S 2007 J. Power Eng. 27 130

    [23]

    Bogumil K, Orphal J, Burrows J P, Flaud J M 2001 Chem. Phys. Lett. 349 241Google Scholar

    [24]

    Mellqvist J, Rosen A 1996 J. Quant. Spectrosc. Radiat. Transfer 56 187Google Scholar

    [25]

    Roehl C M, Orlando J J, Tyndall G S, Shetter R E, Vazquez G J, Cantrell C A, Calvert J G 1994 J. Phys. Chem. 98 7837Google Scholar

    [26]

    凌六一, 韦颖, 黄友锐, 胡仁志, 谢品华 2018 光谱学与光谱分析 38 670Google Scholar

    Ling L, Wei Y, Huang Y R, Hu R Z, Xie P H 2018 Spectrosc. Spect. Anal. 38 670Google Scholar

    [27]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [28]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [29]

    Sneep M, Ubachs W 2005 J. Quant. Spectrosc. Radiat. Transfer 92 293Google Scholar

    [30]

    Shardanand S, Rao A D P 1977 NASA Technical Note (Washington D.C.: National Aeronautics and Space Administration)

    [31]

    Washenfelder R A, Attwood A R, Flores J M, Zarzana K J, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. 9 41Google Scholar

    [32]

    Wu T, Chen W D, Fertein E, Cazier F, Dewaele D, Gao X M 2012 Appl. Phys. B 106 501Google Scholar

    [33]

    Bessant C, Saini S 2000 J. Electroanal. Chem. 489 76Google Scholar

    [34]

    Sun J, Ding J Y, Liu N W, Yang G X, Li J S 2018 Spectrochim. Acta, Part A 191 532Google Scholar

    [35]

    Brown S S, Stark H, Ciciora S J, Mclaughlin R J, Ravishankara A R 2002 Rev. Sci. Instrum. 73 3291Google Scholar

    [36]

    Huang H F, Lehmann K K 2010 Appl. Opt. 49 1387Google Scholar

    [37]

    Li J S, Deng H, Sun J, Yu B L, Fischer H 2016 Sens. Actuators, B 231 723Google Scholar

  • 图 1  实验装置图

    Fig. 1.  Schematic of experimental setup.

    图 2  (a) NO2吸收截面(蓝线)与LED发射光谱(红线); (b) LED输出功率与电流关系

    Fig. 2.  (a) NO2 absorption cross-section (blue line) and LED emission spectrum (red line); (b) relationship between LED output power and current.

    图 3  拟合流程图

    Fig. 3.  Flow chart of fitting.

    图 4  (a)随波长变化的反射率曲线; (b)腔损耗(黑线)和有效路径长度(绿线)

    Fig. 4.  (a) Mirror reflectivity as a function of wavelength; (b) cavity loss (black line) and corresponding effective path length (green line).

    图 5  NO2吸收截面的卷积

    Fig. 5.  Convolution of the NO2 absorption cross-section.

    图 6  NO2拟合结果 (a)实测吸收系数与标准吸收截面拟合; (b)拟合残差

    Fig. 6.  The results of NO2 fitting: (a) Fitting between the measured absorption coefficient and the standard absorption cross section; (b) fitting residuals.

    图 7  多元线性拟合示意图

    Fig. 7.  Multiple linear fitting diagram.

    图 8  NO2拟合结果 (a)实测吸收系数与标准气体吸收系数拟合; (b)−(g)拟合残差

    Fig. 8.  The results of NO2 fitting: (a) Fitting of absorption coefficient between measured and standard gas; (b)−(g) fitting residuals.

    图 9  浓度值对比 (a)浓度计算结果; (b)绝对误差; (c)相对误差

    Fig. 9.  Concentration comparison: (a) The calculated value of concentration; (b) absolute error; (c) relative error.

    图 10  系统稳定性评估 (a) 2 h的浓度数据; (b) Allan偏差图; (c)直方图分析

    Fig. 10.  System stability assessment: (a) Concentration data recorded for 2 hours; (b) Allan deviation plots; (c) histogram analysis.

    图 11  (a) NO2气体的不同浓度; (b)浓度梯度平均值及标准偏差

    Fig. 11.  (a) Different concentrations of NO2; (b) average and standard deviation of concentration gradient.

    表 1  不同NO2浓度对应的拟合残差的标准偏差和信噪比

    Table 1.  Standard deviation and signal-to-noise ratio of fitting residuals corresponding to different NO2 concentrations.

    浓度/ppm7.865.083.282.071.420.75
    标准偏差/(10–6 cm–1)12.358.135.273.442.621.57
    信噪比11.2311.0810.9510.389.728.94
    下载: 导出CSV

    表 2  不同NO2浓度对应的拟合残差的标准偏差和信噪比

    Table 2.  Standard deviation and signal-to-noise ratio of fitting residuals corresponding to different NO2 concentrations.

    浓度/ppm7.865.083.282.071.420.75
    标准偏差/(10–6 cm–1)2.71.671.360.780.620.59
    信噪比52.649.944.642.737.425.1
    下载: 导出CSV
  • [1]

    段秋宴 2019 环境与发展 31 155Google Scholar

    Duan Q Y 2019 Environ. Dev. 31 155Google Scholar

    [2]

    韩荦, 夏滑, 董凤忠, 张志荣, 庞涛, 孙鹏帅, 吴边, 崔小娟, 李哲, 余润磬 2018 中国激光 45 43Google Scholar

    Han L, Xia H, Dong F Z, Zhang Z R, Pang T, Sun P S, Wu B, Cui X J, Li Z, Yu R Q 2018 Chin. J. Lasers 45 43Google Scholar

    [3]

    Min K E, Washenfelder R A, Dubé W P, Langford A O, Edwards P, Zarzana K J, Stutz J, Lu K, Rohrer F, Zhang Y H, Brown S S 2015 Atmos. Meas. Tech. 9 11209Google Scholar

    [4]

    Engeln R, Berden G, Peeters R, Meijei G 1998 Rev. Sci. Instrum. 69 3763Google Scholar

    [5]

    O’keefe A 1998 Chem. Phys. Lett. 293 331Google Scholar

    [6]

    Fiedler S E, Hoheisel G, Ruth A A, Hese A 2003 Chem. Phys. Lett. 382 447Google Scholar

    [7]

    Wu T, Zha Q Z, Chen W D, Xu Z, Wang T, He X D 2014 Atmos. Environ. 95 544Google Scholar

    [8]

    Nakashima Y, Sadanaga Y 2017 Anal. Sci. 33 519Google Scholar

    [9]

    段俊, 秦敏, 方武, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清 2016 光谱学与光谱分析 36 466Google Scholar

    Duan J, Qin M, Fang W, Hu R Z, Lu X, Shen L L, Wang D, Xie P H, Liu J G, Liu W Q 2016 Spectrosc. Spect. Anal. 36 466Google Scholar

    [10]

    Liu J W, Li X, Yang Y M, Wang H C, Wu Y S, Lu X W, Chen M D, Hu J L, Fan X B, Zeng L M, Zhang Y H 2019 Atmos. Meas. Tech. 12 4439Google Scholar

    [11]

    Jordan N, Ye C Z, Ghosh S, Washenfelder R A, Brown S S, Osthoff H D 2019 Atmos. Meas. Tech. 12 1277Google Scholar

    [12]

    Jodan N, Osthoff H D 2020 Atmos. Meas. Tech. 13 285Google Scholar

    [13]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmos. Meas. Tech. 11 4531Google Scholar

    [14]

    Liang S X, Qin M, Xie P H, Duan J, Fang W, He Y B, Xu J, Liu J W, Li X, Tang K, Meng F H, Ye K D, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 2499Google Scholar

    [15]

    吴涛, 陈卫东, 何兴道 2015 光谱学与光谱分析 35 2989Google Scholar

    Wu T, Chen W D, He X D 2015 Spectrosc. Spect. Anal. 35 2989Google Scholar

    [16]

    凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清 2012 物理学报 61 140703Google Scholar

    Ling L Y, Qin M, Xie P H, Hu R Z, Fang W, Jiang Y, Liu J G, Liu W Q 2012 Acta Phys. Sin. 61 140703Google Scholar

    [17]

    Thalman R, Zarzana K J, Tolbert M A, Volkamer R 2014 J. Quant. Spectrosc. Radiat. Transfer 147 171Google Scholar

    [18]

    Meng L S, Wang G X, Augustin P, Fourmentin M, Gou Q, Fertein E, Ba T N, Coeur C, Tomas A, Chen W D 2020 Opt. Lett. 45 1611Google Scholar

    [19]

    庞学霞, 邓泽超, 贾鹏英, 梁伟华 2011 物理学报 60 125201Google Scholar

    Pang X X, Deng Z C, Jia P Y, Liang W H 2011 Acta Phys. Sin. 60 125201Google Scholar

    [20]

    赵士彬 2018 环境与发展 30 140Google Scholar

    Zhao S B 2018 Environ. Dev. 30 140Google Scholar

    [21]

    崔厚欣, 杜振辉, 陈文亮, 齐汝宾, 徐可欣 2008 天津大学学报 41 1162

    Cui H X, Du Z H, Chen W L, Qi R B, Xu K X 2008 J. Tianjin Univ. 41 1162

    [22]

    郑海明, 蔡小舒 2007 动力工程 27 130

    Zheng H M, Cai X S 2007 J. Power Eng. 27 130

    [23]

    Bogumil K, Orphal J, Burrows J P, Flaud J M 2001 Chem. Phys. Lett. 349 241Google Scholar

    [24]

    Mellqvist J, Rosen A 1996 J. Quant. Spectrosc. Radiat. Transfer 56 187Google Scholar

    [25]

    Roehl C M, Orlando J J, Tyndall G S, Shetter R E, Vazquez G J, Cantrell C A, Calvert J G 1994 J. Phys. Chem. 98 7837Google Scholar

    [26]

    凌六一, 韦颖, 黄友锐, 胡仁志, 谢品华 2018 光谱学与光谱分析 38 670Google Scholar

    Ling L, Wei Y, Huang Y R, Hu R Z, Xie P H 2018 Spectrosc. Spect. Anal. 38 670Google Scholar

    [27]

    Washenfelder R A, Langford A O, Fuchs H, Brown S S 2008 Atmos. Chem. Phys. 8 7779Google Scholar

    [28]

    Ling L Y, Xie P H, Qin M, Fang W, Jiang Y, Hu R Z, Zheng N N 2013 Chin. Opt. Lett. 11 063001Google Scholar

    [29]

    Sneep M, Ubachs W 2005 J. Quant. Spectrosc. Radiat. Transfer 92 293Google Scholar

    [30]

    Shardanand S, Rao A D P 1977 NASA Technical Note (Washington D.C.: National Aeronautics and Space Administration)

    [31]

    Washenfelder R A, Attwood A R, Flores J M, Zarzana K J, Rudich Y, Brown S S 2015 Atmos. Meas. Tech. 9 41Google Scholar

    [32]

    Wu T, Chen W D, Fertein E, Cazier F, Dewaele D, Gao X M 2012 Appl. Phys. B 106 501Google Scholar

    [33]

    Bessant C, Saini S 2000 J. Electroanal. Chem. 489 76Google Scholar

    [34]

    Sun J, Ding J Y, Liu N W, Yang G X, Li J S 2018 Spectrochim. Acta, Part A 191 532Google Scholar

    [35]

    Brown S S, Stark H, Ciciora S J, Mclaughlin R J, Ravishankara A R 2002 Rev. Sci. Instrum. 73 3291Google Scholar

    [36]

    Huang H F, Lehmann K K 2010 Appl. Opt. 49 1387Google Scholar

    [37]

    Li J S, Deng H, Sun J, Yu B L, Fischer H 2016 Sens. Actuators, B 231 723Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量. 物理学报, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [4] 刘圣龙, 杨璐, 朱程君, 刘凯, 韩伟, 姚佳烽. 基于生物阻抗谱的细胞悬浮液浓度识别方法研究. 物理学报, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [5] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性. 物理学报, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [6] 徐秋梅, 杨治虎, 郭义盼, 刘会平, 陈燕红, 赵红赟. 低速Xeq+(4q20)离子与Ni表面碰撞中的光辐射. 物理学报, 2018, 67(8): 083201. doi: 10.7498/aps.67.20172570
    [7] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量. 物理学报, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [8] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [9] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [10] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [11] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [12] 陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂. 基于多元定标法的脐橙Pb元素激光诱导击穿光谱定量分析. 物理学报, 2014, 63(10): 104213. doi: 10.7498/aps.63.104213
    [13] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [14] 闫靓, 陈克安, Ruedi Stoop. 多噪声源共同作用下的总烦恼度评价与预测. 物理学报, 2012, 61(16): 164301. doi: 10.7498/aps.61.164301
    [15] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [16] 王焯如, 周斌, 王珊珊, 杨素娜. 应用多光路主动差分光学吸收光谱仪观测大气污染物的空间分布. 物理学报, 2011, 60(6): 060703. doi: 10.7498/aps.60.060703
    [17] 王娜, 陈克安. 水下噪声音色属性回归模型及其在目标识别中的应用. 物理学报, 2010, 59(4): 2873-2881. doi: 10.7498/aps.59.2873
    [18] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
    [19] 张寅超, 龚知本. 可见光谱区水汽分子碰撞加宽的理论计算. 物理学报, 1993, 42(5): 741-749. doi: 10.7498/aps.42.741
    [20] 汪辉, 王若桢. 高温超导材料YBa2Cu3O7-δ在可见光区的电场调制光反射光谱. 物理学报, 1989, 38(1): 145-148. doi: 10.7498/aps.38.145
计量
  • 文章访问数:  5486
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-13
  • 修回日期:  2020-09-13
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回