搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准粒子模型的原生磁星研究

王谊农 初鹏程 姜瑶瑶 庞晓迪 王圣博 李培新

引用本文:
Citation:

基于准粒子模型的原生磁星研究

王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新

Proto-magnetars within quasiparticle model

Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin
PDF
HTML
导出引用
  • 研究了奇异夸克物质在零温、有限温度、强磁场下基于准粒子模型的热力学性质. 结果说明夸克物质的对称能会随着准粒子模型的耦合常数增加而增加, 对称能越大夸克物质的物态方程就越硬; 结果还表明温度场与磁场对奇异夸克物质的每核子能量、每核子自由能、各向异性压强都有较大影响. 通过对原生磁星的计算, 发现原生磁星的最大质量和核心温度不仅受到原生星演化过程中的加热过程影响, 还与磁星内部磁场强度与磁场方向的分布密切相关. 随后考虑了磁星内部径向、横向磁场混合的情况, 发现磁星最大质量会随着磁场方向与径向的夹角变化. 本文所做工作对于理解有限温度、强磁场下奇异夸克物质的同位旋效应和热力学性质以及致密星体物理中的原生磁星的性质具有一定的推进作用, 为接下来寻找磁星内部的真实磁场分布提供了前期理论基础.
    We investigate the thermodynamical properties of strange quark matter (SQM) at zero/finite temperature and under constant magnetic field within quasiparticle model. The quark matter symmetry energy, energy per baryon, free energy per baryon, anisotropic pressures are also studied and the result indicates that both the effects of temperature and magnetic field can significantly influence the thermodynamical properties of quark matter and proto-quark stars (PQSs). Our result also indicates that the maximum mass and the core temperature of PQSs not only depends on the heating process at the isentropic stages, but also but also the magnetic field strength and orientation distribution inside the magnetar within quasiparticle model.
      通信作者: 初鹏程, kyois@126.com
    • 基金项目: 国家自然科学基金(批准号: 11975132, 12205158, 11505100)和山东省自然科学基金(批准号: ZR2022JQ04, ZR2021QA037, ZR2019YQ01)资助的课题
      Corresponding author: Chu Peng-Cheng, kyois@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 12205158, 11505100) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022JQ04, ZR2021QA037, ZR2019YQ01)
    [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.)

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd)

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [6]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [7]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [8]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [9]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [10]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [11]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [12]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [13]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [14]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [15]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [16]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [17]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [18]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [19]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [20]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [21]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [22]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [23]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [24]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [25]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [26]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [27]

    Antoniadis J 2013 Science 340 6131

    [28]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [29]

    Cromartie H T, Fonseca E, Ransom S M, et al. 2020 Nat. Astron. 4 72Google Scholar

    [30]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [31]

    Deng Z L 2020 Astrophys. J. 892 4Google Scholar

    [32]

    Deng Z L 2021 Astrophys. J. 909 174Google Scholar

    [33]

    Prakash M, Bombaci I, Prakash M, Ellis P J, Lattimer J M, Knorren R 1997 Phys. Rept. 280 1Google Scholar

    [34]

    Gupta V K, Gupta Asha, Singh S, Anand J D 2003 Int. J. Mod. Phys. D 12 583Google Scholar

    [35]

    Shen J, Zhang Y, Wang B, Su R K 2005 Int. J. Mod. Phys. A 20 7547Google Scholar

    [36]

    Dexheimer V, Torres J R, Menezes D P 2013 Eur. Phys. J. C 73 2569Google Scholar

    [37]

    Dexheimer V, Menezes D P, Strickland M 2014 J. Phys. G: Nucl. Part. Phys. 41 015203Google Scholar

    [38]

    Drago A, Lavagno A, Pagliara G 2014 Phys. Rev. D 89 043014Google Scholar

    [39]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 41Google Scholar

    [40]

    Bauswein A, Stergioulas N, Janka H 2016 Eur. Phys. J. A 52 56Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [46]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [47]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [48]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [50]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [51]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 79 035807Google Scholar

    [52]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 80 065805Google Scholar

    [53]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [54]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [55]

    Zhong S Q, Dai Z G 2020 Astrophys. J. 893 9Google Scholar

    [56]

    Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H, Du Y J 2016 MNRAS 456 55Google Scholar

    [57]

    Gao Z F 2021 Astron. Nachr. 342 369Google Scholar

    [58]

    Zhu C 2016 Mod. Phys. Lett. A 31 1650070

    [59]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [60]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [61]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [62]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [63]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [64]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [65]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [66]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [67]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [68]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [69]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [70]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [71]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [72]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [73]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [74]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [75]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [76]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [77]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [78]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [80]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [81]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [82]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [83]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [84]

    Chu P C, Jiang Y Y, Liu H, Zhang Z, Zhang X M, Li X H 2021 Eur. Phys. J. C 81 569Google Scholar

    [85]

    Chu P C, Li X H, Liu H, Zhang J W 2021 Phys. Rev. C 104 045805Google Scholar

    [86]

    Chu P C, Zhou Y, Jiang Y Y, Ma H Y, Liu H, Zhang X M 2021 Eur. Phys. J. C 81 93Google Scholar

    [87]

    Steiner A W, Prakash M, Lattimer J M 2001 Phys. Lett. B 509 10Google Scholar

    [88]

    Reddy S, Praskash M, Lattimer J M 1998 Phys. Rev. D 58 013009Google Scholar

    [89]

    Steiner A W, Prakash M, Lattimer J M 2000 Phys. Lett. B 486 239Google Scholar

    [90]

    Menezes D P, Deppman A, Megias E, Castro L B 2015 Eur. Phys. J. A 51 155

    [91]

    Shao G Y 2011 Phys. Lett. B 704 343Google Scholar

    [92]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [93]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

  • 图 1  基于不同参数的夸克物质对称能

    Fig. 1.  Quark matter symmetry energy with different parameter sets

    图 2  零温、有限温度、强磁场下奇异夸克物质的每核子自由能/能量、压强随重子数密度的变化

    Fig. 2.  The energy per baryon, free energy per baryon, and the corresponding pressure as functions of baryon density with g-2 in zero temperature, finite temperature, and strong magnetic field cases

    图 3  零温、有限温度、强磁场下奇异夸克物质的组分随重子数密度和磁场的变化

    Fig. 3.  The fractions of SQM as functions of baryon density and magnetic fields with g-2 in zero temperature, finite temperature, and strong magnetic field cases

    图 4  不同温度下奇异夸克物质的声速随重子数密度的变化

    Fig. 4.  The sound velocity of SQM as functions of baryon density with g-2 at different temperatures

    图 5  零温磁星中心压强以及磁星最大质量与对应半径按径向分布与横向分布随$ B_0 $的变化

    Fig. 5.  Pressure for the central density, the maximum mass of magnetar, and the radius of longitudinal orientation case and transverse orientation case as functions of $ B_0 $

    图 6  原生星演化中不同阶段的原生磁星质量半径关系

    Fig. 6.  Mass-radius relations of the stages along the star evolution line of PQS with g-2 under the density-dependent magnetic field

    图 7  磁场与零磁场下原生星核心温度随中心密度的变化关系

    Fig. 7.  The core temperature for the star matter as a function of the central baryon density under zero magnetic field and $ B_0=4\times 10^{18} $ G

    图 8  纵向、横向磁场情况都考虑时, 在g-2参数、$B_0=4\times $$ 10^{18}$G 情况下基于不同$ \theta $角所计算的零温磁星质量半径关系

    Fig. 8.  Mass-radius relation for magnetars at zero temperature with g-2 and $ B_0=4\times 10^{18} $G at different $ \theta $.

  • [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.)

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd)

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [6]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [7]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [8]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [9]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [10]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [11]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [12]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [13]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [14]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [15]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [16]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [17]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [18]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [19]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [20]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [21]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [22]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [23]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [24]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [25]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [26]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [27]

    Antoniadis J 2013 Science 340 6131

    [28]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [29]

    Cromartie H T, Fonseca E, Ransom S M, et al. 2020 Nat. Astron. 4 72Google Scholar

    [30]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [31]

    Deng Z L 2020 Astrophys. J. 892 4Google Scholar

    [32]

    Deng Z L 2021 Astrophys. J. 909 174Google Scholar

    [33]

    Prakash M, Bombaci I, Prakash M, Ellis P J, Lattimer J M, Knorren R 1997 Phys. Rept. 280 1Google Scholar

    [34]

    Gupta V K, Gupta Asha, Singh S, Anand J D 2003 Int. J. Mod. Phys. D 12 583Google Scholar

    [35]

    Shen J, Zhang Y, Wang B, Su R K 2005 Int. J. Mod. Phys. A 20 7547Google Scholar

    [36]

    Dexheimer V, Torres J R, Menezes D P 2013 Eur. Phys. J. C 73 2569Google Scholar

    [37]

    Dexheimer V, Menezes D P, Strickland M 2014 J. Phys. G: Nucl. Part. Phys. 41 015203Google Scholar

    [38]

    Drago A, Lavagno A, Pagliara G 2014 Phys. Rev. D 89 043014Google Scholar

    [39]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 41Google Scholar

    [40]

    Bauswein A, Stergioulas N, Janka H 2016 Eur. Phys. J. A 52 56Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [46]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [47]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [48]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [50]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [51]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 79 035807Google Scholar

    [52]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 80 065805Google Scholar

    [53]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [54]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [55]

    Zhong S Q, Dai Z G 2020 Astrophys. J. 893 9Google Scholar

    [56]

    Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H, Du Y J 2016 MNRAS 456 55Google Scholar

    [57]

    Gao Z F 2021 Astron. Nachr. 342 369Google Scholar

    [58]

    Zhu C 2016 Mod. Phys. Lett. A 31 1650070

    [59]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [60]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [61]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [62]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [63]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [64]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [65]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [66]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [67]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [68]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [69]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [70]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [71]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [72]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [73]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [74]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [75]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [76]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [77]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [78]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [80]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [81]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [82]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [83]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [84]

    Chu P C, Jiang Y Y, Liu H, Zhang Z, Zhang X M, Li X H 2021 Eur. Phys. J. C 81 569Google Scholar

    [85]

    Chu P C, Li X H, Liu H, Zhang J W 2021 Phys. Rev. C 104 045805Google Scholar

    [86]

    Chu P C, Zhou Y, Jiang Y Y, Ma H Y, Liu H, Zhang X M 2021 Eur. Phys. J. C 81 93Google Scholar

    [87]

    Steiner A W, Prakash M, Lattimer J M 2001 Phys. Lett. B 509 10Google Scholar

    [88]

    Reddy S, Praskash M, Lattimer J M 1998 Phys. Rev. D 58 013009Google Scholar

    [89]

    Steiner A W, Prakash M, Lattimer J M 2000 Phys. Lett. B 486 239Google Scholar

    [90]

    Menezes D P, Deppman A, Megias E, Castro L B 2015 Eur. Phys. J. A 51 155

    [91]

    Shao G Y 2011 Phys. Lett. B 704 343Google Scholar

    [92]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [93]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

  • [1] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星. 物理学报, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [2] 阮丽娟, 许长补, 杨驰. 夸克物质中的超子整体极化与矢量介子自旋排列. 物理学报, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [3] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强. 物理学报, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [4] 周淑英, 沈婉萍, 毛鸿. 强子夸克相变表面张力解析求解. 物理学报, 2022, 71(21): 211101. doi: 10.7498/aps.71.20220659
    [5] 龚武坤, 郭文军. 混合中子星内强子-夸克退禁闭相变. 物理学报, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [6] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [7] 吉日木图, 敖登, 薛康. 坐标空间中构造的Breit夸克势与介子和夸克偶素的质量劈裂. 物理学报, 2018, 67(9): 091201. doi: 10.7498/aps.67.20172155
    [8] 包特木尔巴根, 杨兴强, 喻孜. 密度依赖口袋常数下奇异物质的热力学自洽处理及其对混合星性质的影响. 物理学报, 2013, 62(1): 012101. doi: 10.7498/aps.62.012101
    [9] 李季根, 颜骏, 邹伯夏, 苏文杰. 奇异物质与暗能量作用的sine-Gordon孤子星模型. 物理学报, 2011, 60(5): 050301. doi: 10.7498/aps.60.050301
    [10] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究. 物理学报, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [11] 赖祥军, 罗志全, 刘晶晶, 刘宏林. 超新星核中的夸克相变及夸克质量效应. 物理学报, 2008, 57(3): 1535-1541. doi: 10.7498/aps.57.1535
    [12] 陈 洪, 梅 花, 沈彭年, 姜焕清. 重夸克偶素质量谱的相对论夸克模型研究(已撤稿). 物理学报, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] 贺泽君, 龙家丽, 马国亮, 马余刚, 张家驹, 刘 波. 化学非平衡夸克-胶子物质中等质量双轻子的产生. 物理学报, 2003, 52(11): 2831-2835. doi: 10.7498/aps.52.2831
    [14] 贺泽君, 周文杰, 蒋维洲, 张家驹, 刘波. 膨胀的热夸克胶子物质的中等质量双轻子的增强. 物理学报, 2002, 51(6): 1312-1316. doi: 10.7498/aps.51.1312
    [15] 戴子高, 陆埮. 奇异星的冷却. 物理学报, 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
    [16] 戴子高, 陆埮, 彭秋和. 中子星内部非奇异-奇异夸克物质的相变. 物理学报, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [17] 谢凤仙. t夸克偶素能谱的计算. 物理学报, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [18] 何启智, 杨建华, 程国均, 杨荣辅. 用夸克模型探索π-N相互作用. 物理学报, 1985, 34(1): 1-9. doi: 10.7498/aps.34.1
    [19] 何祚庥, 林大航, 赵培贞. 考虑胶子质量的重夸克偶素位模型. 物理学报, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
    [20] 王家珠, 毕品镇, 殷鹏程. 重夸克对强子的椭球袋模型. 物理学报, 1981, 30(12): 1707-1712. doi: 10.7498/aps.30.1707
计量
  • 文章访问数:  3136
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-10-18
  • 上网日期:  2022-10-21
  • 刊出日期:  2022-11-20

/

返回文章
返回