搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国首台准环对称仿星器中线圈形变对磁拓扑结构的影响

李丹 刘海峰

引用本文:
Citation:

中国首台准环对称仿星器中线圈形变对磁拓扑结构的影响

李丹, 刘海峰

Magnetic configurations of Chinese First Quasi-axisymmetric Stellarator influenced by coil perturbations

Dan Li, Haifeng Liu
PDF
导出引用
  • 仿星器线圈的构形形变在制造和装配过程中是不可避免的,这些形变会导致误差场的产生,仿星器的磁场位形对误差场非常敏感,严重制约等离子体的约束性能。因此,评估线圈形变对仿星器磁拓扑结构的影响是非常重要的研究课题。本文研究了中国首台准环对称仿星器(CFQS)上非平面模块化线圈(MC)形变对真空场下磁拓扑结构的影响。在本工作中,利用磁岛宽度变化来衡量线圈形变造成的误差场,采用了三种旋转变换(ι=2/4、2/5和2/6)的磁岛位形,分别考虑了每个模块化线圈的面内扰动和面外扰动。研究结果表明:同一线圈的形变会产生不同的共振误差场,且这些误差场的幅度各不相同;共振误差场对每个线圈形变的敏感度不同,最复杂线圈的面内扰动可能对磁拓扑结构的影响并不明显;共振误差场对线圈面外扰动的灵敏度高于面内扰动的灵敏度。这些结果表明放宽特定线圈的构形误差不会显著影响仿星器的磁场位形,有望缓解对MC线圈设计和制造的工程限制。此外,这项工作还有助于为即将进行的CFQS磁位形示踪实验提供精确的理论模型。
    Deviations of stellarator coils during fabrication and assembly are inevitable, which result in error fields. The magnetic configurations in stellarators are dominantly generated by external coils, sensitive to these error fields. Therefore, it is essential to estimate impacts of coil deformations on a stellarator magnetic topology. This paper is dedicated to studying the influence of deformations of nonplanar modular coils (MC) on the magnetic topology in Chinese First Quasi-axisymmetric Stellarator (CFQS). In this work, by changing the Fourier coefficients that represent the CCS and the coil, we obtain two types of deformation coils, i.e., "in-surface" and "out-surface" perturbations on each MC. Subsequently, we utilize three kinds of magnetic islands with rotational transformsι= 2/4, 2/5, and 2/6 to identify coil deviations that have a significant impact on the CFQS magnetic configuration. Serval important results are achieved: (ⅰ) the same deformation of a coil gives rise to various resonant error fields, and the amplitudes of these error fields are different. (ⅱ) The sensitivity of a resonant error field to the deformation of each coil is different. Local deviations of the most complex coil may lead to indistinctive impacts on the magnetic topology. (ⅲ) Resonant error fields are more sensitive to broad perturbations of a coil than local perturbations. These results address that the relaxation of specific coil tolerances is expected to decrease engineering constraints of coil design and fabrication. In addition, this work also helps develop a precise computational model for the forthcoming mapping experiments of magnetic configurations in CFQS.
  • [1]

    Rummel T, Risse K, Viebke H, Braeuer T, Kisslinger J 2004 IEEE Trans. Appl. Supercond. 14 1394

    [2]

    Xiong G Z, Xu Y H, Isobe M, Shimizu A, Ogawa K, Kinoshita S, Liu H F, Wang X Q, Cheng J, Liu H, Huang J, Zhang X, Zhang Y C, Yin D P, Wang A Z, Okamura S, Tang C J 2023 Plasma Phys. Control. Fusion 65 035020

    [3]

    Shoji M, Shimizu A, Kinoshita S, Okamura S, Xu Y H, Liu H F 2023 Plasma Fusion Res. 18 2405026

    [4]

    Boozer A H 2005 Rev. Mod. Phys. 76 1071

    [5]

    Waelbroeck F L 2009 Nucl. Fusion 49 104025

    [6]

    Lazerson S A, Bozhenkov S, Israeli B, Otte M, Niemann H, Bykov V, Endler M, Andreeva T, Ali A, Drewelow P, Jakubowski M, Sitjes A P, Pisano F, Cannas B and the W7-X Team 2018 Plasma Phys. Control. Fusion 60 124002

    [7]

    Kißlinger J, Andreevab T 2005 Fusion Eng. Des. 74 p623

    [8]

    Andreeva T, Bräuer T, Endler M, Kißlinger J, Toussaint U V 2009 Fusion Eng. Des. 84 p408

    [9]

    Yamazaki K, Yanagi N, Ji H, Kaneko H, Ohyabu N, Satow T, Morimoto S, Yamamoto J, Motojima O, LHD Design Group 1993 Fusion Eng. Des. 20 p79

    [10]

    Strykowsky R L, Brown T, Chrzanowski J, Cole M, and Heitzenroeder P, and Neilson G H, Rej D, and Viol M 2009 23rd IEEE/NPSS Symposium on Fusion Engineering, p1

    [11]

    Brooks A, Reiersen W 2003 20th IEEE/NPSS Symposium on Fusion Engineering, p553

    [12]

    Nührenberg J, Sindoni E, Lotz W, Troyon F, Gori S, Vaclavik J 1994 Proceedings of the Joint Varenna Lausanne International Workshop on Theory of Fusion Plasmas, p3

    [13]

    Garabedian P 1996 Phys. Plasmas 3(7), p2483

    [14]

    Huang J, Nakata M, Xu Y H, Shimizu A, Isobe M, Okamura S, Liu H F, Wang X Q, Zhang X, Liu H, Cheng J, Tang C J, 2022 Phys. Plasmas 29(5), 052505

    [15]

    Xu Y H, Liu H F, Xiong G Z, Shimizu A, Kinoshita S, Isobe M, Okamura S, Nakata M, Yin D, Wan Y, Wilfred, Cooper A, Zhu C X, Liu H, Zhang X, Huang J, Wang X Q, Tang C J 2018 IAEA Fusion Energy Conf, p5

    [16]

    Isobe M, Shimizu A, Liu H F, Liu H, Xiong G Z, Yin D P, Ogawa K, Yoshimura Y, Nakata M, Kinoshita S, Okamura S, Tang C J, Xu Y H and the CFQS Team 2019 Plasma Fusion Res. 14 3402074

    [17]

    Wang X Q, Xu Y H, Shimizu A, Isobe M, Okamura S, Todo Y, Wang H, Liu H F, Huang J, Zhang X 2021 Nucl. Fusion 61 036021

    [18]

    Huang J, Li M S, Qin C, Wang X Q Acta Phys. Sin. 2022, 71(18): 185202 (in Chinese) [黄捷, 李沫杉, 覃程, 王先驱. 物理学报, 2022, 71(18): 185202.]

    [19]

    Su X, Wang X Q, Fu T, Xu Y H Acta Phys. Sin. 2023, 72(21): 215205. (in Chinese) [苏祥, 王先驱, 符添, 许宇鸿. 物理学报, 2023, 72(21): 215205.]

    [20]

    Zhu C X, Gates D A, Hudson S R, Liu H F, Xu Y H, Shimizu A, Okamura S 2019 Nucl. Fusion 59 126007

    [21]

    Shimizu A, Liu H F, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Satake S, Suzuki C, Xiong G Z, Xu Y H, Liu H, Zhang X, Huang J, Wang X Q, Tang C J, Yin D P, Wan Y and CFQS Team 2019 Plasma Fusion Res. 14 3403151

    [22]

    Zhu C X, Hudson S R, Song Y T, Wan Y X 2018 Plasma Phys. Control. Fusion 60 065008

    [23]

    Zhu C X, Hudson S R, Lazerson S A, Song Y T, Wan Y X 2018 Plasma Phys. Control. Fusion 60 054016

    [24]

    Okamura S, Liu H F, Shimizu A, Kinoshita S, Isobe M, Xiong G Z, Xu Y H 2020 J. Plasma Phys. 86 815860402

    [25]

    Shimizu A, Kinoshita S, Isobe M, Okamura S, Ogawa K, Nakata M, Yoshimura Y, Suzuki C, Osakabe M, Murase T, Nakagawa S, Tanoue H, Xu Y H, Liu H F, Liu H, Huang J, Wang X Q, Cheng J, Xiong G Z, Tang C J, Yin D P and Wan Y 2022 Nucl. Fusion 62 016010

    [26]

    Liu H F, Shimizu A, Xu Y H, Okamura S, Kinoshita S, Isobe M, Li Y B, Xiong G Z, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Yin D P, Wang Y, Murase T, Nakagawa S and Tang C J 2021 Nucl. Fusion 61 016014

    [27]

    Li Y B, Liu H F, Xu Y H, Shimizu A, Kinoshita S, Okamura S, Isobe X, Xiong G Z, Luo Y, Cheng J, Liu H, Wang X Q, Huang J, Zhang X, Yin D P, Wan Y and Tang C J 2020 Plasma Phys. Control. Fusion 62 125004

    [28]

    Liu H F, Zhang J, Xu Y H, Shimizu A, Cooper W A, Okamura S, Isobe M, Wang X Q, Huang J, Cheng J, Liu H, Zhang X, Tang C J 2023 Nucl. Fusion 63 026018

    [29]

    Kinoshita S, Shimizu A, Okamura S, Isobe M, Xiong G Z, Liu H F, Xu Y H and The CQFS Team. 2019 Plasma Fusion Res. 14 3405097

    [30]

    Liu H F, Shimizu A, Isobe m, Okamura S, Nishimura s, Suzuki C, Xu Y H, Zhang X, Liu B, Huang J, Wang X Q, Liu H, Tang C J, Yin D P, Wan Y and CFQS team 2018 Plasma Fusion Res. 13 3405067

    [31]

    Boozer A H 2015 Nucl. Fusion 55 025001

    [32]

    Pedersen T S, Otte M, Lazerson S, Helander P, Bozhenkov S, Biedermann C, Klinger T, Wolf R C, Bosch F S and The Wendelstein 7-X Team 2016 Nat Commun. 7 13493

    [33]

    Merkel P 1987 Nucl. Fusion 27 867

    [34]

    Zhu C X, Hudson S R, Song Y T, Wan Y X 2018 Nucl. Fusion 58 016008

    [35]

    Drevlak M 1998 Fusion Technology. 33(2) p106

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质. 物理学报, doi: 10.7498/aps.72.20221599
    [2] 任珍珍, 申伟. 负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究. 物理学报, doi: 10.7498/aps.72.20230650
    [3] 苏祥, 王先驱, 符添, 许宇鸿. CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制. 物理学报, doi: 10.7498/aps.72.20230546
    [4] 王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新. 基于准粒子模型的原生磁星研究. 物理学报, doi: 10.7498/aps.71.20220795
    [5] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究. 物理学报, doi: 10.7498/aps.71.20220729
    [6] 沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如. 中国环流器2号A托卡马克弹丸注入放电中空电流与反磁剪切位形. 物理学报, doi: 10.7498/aps.70.20210641
    [7] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, doi: 10.7498/aps.68.20190760
    [8] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, doi: 10.7498/aps.68.20190051
    [9] 卓超, 杜建邦. 多维温度场对光纤环Shupe效应误差影响的理论分析. 物理学报, doi: 10.7498/aps.67.20170271
    [10] 陈兴乐, 雷银照. 导电导磁管道外任意放置线圈激励下脉冲涡流场时域解析解. 物理学报, doi: 10.7498/aps.63.240301
    [11] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用. 物理学报, doi: 10.7498/aps.62.159302
    [12] 任洪亮, 丁攀峰, 李小燕. 光镊轴向阱位操控及器件安装误差对径向阱位操控的影响. 物理学报, doi: 10.7498/aps.61.210701
    [13] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, doi: 10.7498/aps.61.086103
    [14] 李传起, 顾斌, 母丽丽, 张青梅, 陈美红, 蒋勇. 赤道面磁层顶位形的磁流体力学模拟研究. 物理学报, doi: 10.7498/aps.61.219402
    [15] 邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究. 物理学报, doi: 10.7498/aps.60.025213
    [16] 查学军, 朱思铮, 虞清泉. 托卡马克极向场线圈的优化方法. 物理学报, doi: 10.7498/aps.52.428
    [17] 徐昆明, 陆道芳, 姚希贤. 圆对称环域Josephson结中的零场台阶. 物理学报, doi: 10.7498/aps.41.97
    [18] 安志刚, P. H. Diamond. 场反向箍缩位形的电阻性互换不稳定性及其对能量约束性能的影响. 物理学报, doi: 10.7498/aps.34.314
    [19] 石秉仁. 快加热环流器等离子体的位形演变. 物理学报, doi: 10.7498/aps.30.1196
    [20] 谷超豪, 胡和生. 球对称的SU2规范场和磁单极的规范场描述. 物理学报, doi: 10.7498/aps.26.155
计量
  • 文章访问数:  75
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-13

/

返回文章
返回