搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新质量标度下u-d夸克星与其潮汐形变的研究

徐建峰 王靖涛 夏铖君

引用本文:
Citation:

新质量标度下u-d夸克星与其潮汐形变的研究

徐建峰, 王靖涛, 夏铖君

On the study of u-d quark star and its tidal deformability with a new mass scaling

XU Jianfeng, WANG Jingtao, Xia Chengjun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 奇异夸克物质(Strang Quark Matter,SQM)被认为是强相互作用的真正基态,然而近期有研究表明普通夸克物质(u-d Quark Matter,u-d QM)也有可能是强相互作用的基态.通过在夸克质量标度中采用伍德-萨克松(Woods-Saxon)型的衰减因子,基于等效质量模型对u-d QM状态方程的计算结果表明,衰减因子的引入增大了u-d QM稳定存在的参数窗口,使得普通夸克星(u-dQuark Star,u-d QS)的质量在满足2倍太阳质量的前提下,同时满足潮汐形变Λ1.4 ∈[70,580],这一计算结果符合目前的相关天文观测数据,因此脉冲星本质上有可能是u-d QM构成的u-d QS.这一结果为理解脉冲星的本质提供了一种可能,也进一步加深了对强相互作用的理解.
    Strang Quark Matter (SQM) is considered to be the true ground state of the strong interactions, but recent studies have shown that ordinary quark matter (u-d Quark Matter, u-d QM) may also be the ground state of the strong interactions.
    By inserting an attenuation factor of Woods-Saxon type in the quark mass scaling, the resulting calculations of equation of state of u-d QM based on equiv-particle model show that the stability window of model parameters for stable u-d QM can be significantly enlarged with proper model parameters, which can be seen in the following figure. In this figure, the red solid and dashed lines represent the curves of √D versus C with and without attenuation factor, respectively, when the minimum value of the average energy per baryon is set to 930 MeV; the blue solid and dashed lines represent the curves of √D versus C with and without attenuation factor, respectively, when mu = 0. Thereby, the red and blue shaded areas are the absolute stable regions for u-d QM without and with attenuation factor in mass scaling. It is obvious that with the inclusion of attenuation factor and proper model parameters the absolute stable region (blue shaded area) for u-d QM can be much larger than that without the attenuation factor (red shaded area).
    The introduction of the attenuation factor makes it possible that the maximum mass of ordinary quark star (u-d quark star, u-d QS) can be larger than 2 times the solar mass, and meanwhile the tidal deformability satisfies Λ1.4 ∈ [70, 580], which are both consistent with the current astronomical observations. Therefore, the pulsars may be essentially the u-d QSs. This result offers a possibility for understanding the nature of pulsars, and it also further deepens the understanding of the strong interactions.
  • [1]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77065807

    [2]

    Weissenborn S, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J 2011 Astrophys. J. 740 L14

    [3]

    Clemente F D, Casolino M, Drago A, Lattanzi M, Ratti C 2025 Mon. Not. R. Astron. Soc. 5371056

    [4]

    Li C M, Zheng H R, Zuo S Y, Zhao Y P, Wang F, Huang Y F 2025 Astrophys. J. 980231

    [5]

    Song X Y 2025 Phys. Rev. D 111063018

    [6]

    Zhang C 2020 Phys. Rev. D 101043003

    [7]

    Xu J F, Peng G X, Liu F, Hou D F, Chen L W 2015 Phys. Rev. D 92025025

    [8]

    Xu R X 2003 Astrophys. J. 596 L59

    [9]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62025801

    [10]

    Klähn T, Fischer T 2015 Astrophys. J. 810134

    [11]

    Xia T, He L Y, Zhuang P F 2013 Phys. Rev. D 88056013

    [12]

    Wen X J, Feng Z Q, Li N, Peng G X 2009 J. Phys. G 36025011

    [13]

    Li B L, Cui Z F, Yu Z H, Yan Y, An S, Zong H S 2019 Phys. Rev. D 99043001

    [14]

    Zhang C, Gao Y, Xia C J, Xu R X 2023 Phys. Rev. D 108063002

    [15]

    Xia C J, Peng G X, Chen S W, Lu Z Y, Xu J F 2014 Phys. Rev. D 89105027

    [16]

    Chen S W, Gao L, Peng G X 2012 Chin. Phys. C 36947

    [17]

    Xu J F, Cui L, Lu Z Y, Xia C J, Peng G X 2023 Nucl. Sci. Tech. 34171

    [18]

    Demorest P, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 4671081

    [19]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, Kerkwijk M H V, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, Mclaughlin M A, Pennucci T T, Ransom S M, Stairs I H, Leeuwen J V, Verbiest P W, Whelan D G 2013 Science 3401233232

    [20]

    Cromartie H T, Fonseca E, Ransom S M, Demorest P B, Arzoumanian Z, Blumer H, Brook P R, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Zhu W W 2020 Nat. Astron. 472

    [21]

    Fonseca E, Cromartie H T, Pennucci T T, Ray P S, Kirichenko A Y, Ransom S M, Demorest P B, Stairs I H, Arzoumanian Z, Guillemot L, Parthasarathy A, Kerr M, Cognard I, Baker P T, Blumer H, Brook P R, DeCesar M, Dolch T, Dong F A, Ferrara E C, Fiore W, Garver-Daniels N, Good D C, Jennings R, Jones M L, Kaspi V M, Lam M T, Lorimer D R, Luo J, McEwen A, McKee J W, McLaughlin M A, McMann N, Meyers B W, Naidu A, Ng C, Nice D J, Pol N, Radovan H A, ShapiroAlbert B, Tan C M, Tendulkar S P, Swiggum J K, Wahl H M, Zhu W W 2021 Astrophys. J. Lett. 915 L12

    [22]

    LIGO Scientific and Virgo Collaboration, Abbott R, et al 2020 Astrophys. J. Lett. 896 L44

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al 2016 Phys. Rev. Lett. 116061102

    [24]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al 2017 Astrophys. J. 848 L12

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al 2018 Phys. Rev. Lett. 121161101

    [26]

    Witten E 1984 Phys. Rev. D 30272

    [27]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 302379

    [28]

    Holdom B, Ren J, Zhang C 2018 Phys. Rev. Lett. 120222001

    [29]

    Wang J T, Peng G X 2023 Int. J. Mod. Phys. E 322350033

    [30]

    Fowler G, Raha S, Weiner R 1981 Z. Phys. C 9271

    [31]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61015201

    [32]

    Wen X J, Zhong X H, Peng G X, Shen P N, Ning P Z 2005 Phys. Rev. C 72015204

    [33]

    Chen H M, Xia C J, Peng G X 2022 Chin. Phys. C 46055102

    [34]

    Damour T, Nagar A 2009 Phys. Rev. D 80084035

    [35]

    Fonseca E, Pennucci T T, Ellis J A, Stairs I H, Nice D J, Ransom S M, Demorest P B, Arzoumanian Z, Crowter K, Dolch T, Ferdman R D, Gonzalez M E, Jones G, Jones M L, Lam M T, Levin L, McLaughlin M A, Stovall K, Swiggum J K, Zhu W 2016 Astrophys. J. 832167

    [36]

    Chu P C, Chen L W 2014 Astrophys. J 780135

    [37]

    Xu J F, Xia C J, Lu Z Y, Peng G X, Zhao Y P 2022 Nucl. Sci. Tech. 33143

    [38]

    Xu J F, Cui L, Xia C J, Lu Z Y 2024 Nucl. Phys. Rev. 41325

    [39]

    Cui S S, Peng G X, Lu Z Y, Peng C, Xu J F 2015 Nucl. Sci. Tech. 2640503

    [40]

    Yang L, Wen X J 2017 Phys. Rev. D 96056023

    [41]

    Chu P C, Li X H, Ma H Y, Wang B, Dong Y M, Zhang X M 2018 Phys. Lett. B 2502447

    [42]

    Felipe R G, Martinez A P, Rojas H P, Orsaria M 2008 Phys. Rev. C 77015807

    [43]

    Chu P C, Liu H, Du X B 2024 Acta Phys. Sin. 73052101

    [44]

    Pal S, Chaudhuri G 2024 Phys. Rev. D 110123021

    [45]

    Zheng X P, Yang S H, Li J R 2003 Astrophys. J. Lett. 585 L135

    [46]

    Gourgoulhon E, Haensel P, Livine R, Paluch E, Bonazzola S, Marck J A 1999 Astron. Astrophys. 349851

    [47]

    Yuan W L, Li A 2024 Astrophys. J. 9963

    [48]

    Bai Y, Chen T K 2025 arXiv: 2502.20241

  • [1] 初鹏程, 刘玉珩, 刘鹤, 刘宏铭, 杨永杭. 强磁场与有限温度下色味锁夸克星的唯象模型研究. 物理学报, doi: 10.7498/aps.74.20250451
    [2] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星. 物理学报, doi: 10.7498/aps.73.20231649
    [3] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质. 物理学报, doi: 10.7498/aps.72.20221599
    [4] 王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新. 基于准粒子模型的原生磁星研究. 物理学报, doi: 10.7498/aps.71.20220795
    [5] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量. 物理学报, doi: 10.7498/aps.70.20210240
    [6] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, doi: 10.7498/aps.66.030505
    [7] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, doi: 10.7498/aps.64.094702
    [8] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量. 物理学报, doi: 10.7498/aps.64.166401
    [9] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, doi: 10.7498/aps.64.064702
    [10] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, doi: 10.7498/aps.63.150505
    [11] 包特木尔巴根, 杨兴强, 喻孜. 密度依赖口袋常数下奇异物质的热力学自洽处理及其对混合星性质的影响. 物理学报, doi: 10.7498/aps.62.012101
    [12] 李风姣, 贺端威, 柳雷, 张毅, 敬秋民, 刘盛刚, 陈海花, 毕延, 徐济安. -Ce中的高压纵波声子模软化和状态方程描述. 物理学报, doi: 10.7498/aps.61.116401
    [13] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究. 物理学报, doi: 10.7498/aps.61.026701
    [14] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程. 物理学报, doi: 10.7498/aps.60.060509
    [15] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, doi: 10.7498/aps.58.1879
    [16] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, doi: 10.7498/aps.57.3397
    [17] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, doi: 10.7498/aps.56.5969
    [18] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, doi: 10.7498/aps.56.3306
    [19] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响. 物理学报, doi: 10.7498/aps.55.764
    [20] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索. 物理学报, doi: 10.7498/aps.51.337
计量
  • 文章访问数:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-18

/

返回文章
返回