搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于各向异性及后加速技术的百飞秒时间分辨条纹管设计

田丽萍 沈令斌 陈萍 刘玉柱 陈琳 惠丹丹 陈希儒 赵卫 薛彦华 田进寿

引用本文:
Citation:

基于各向异性及后加速技术的百飞秒时间分辨条纹管设计

田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿

100-fs time-resolved streak tube design based on anisotropy and post-acceleration technology

Tian Li-Ping, Shen Ling-Bin, Chen Ping, Liu Yu-Zhu, Chen Lin, Hui Dan-Dan, Chen Xi-Ru, Zhao Wei, Xue Yan-Hua, Tian Jin-Shou
PDF
HTML
导出引用
  • 减小空间电荷效应及扫描偏转系统边缘场效应引起的时间弥散是实现百飞秒级时间分辨条纹管的关键. 本文提出并设计了一种新型飞秒条纹管, 结合超高加速电场、高扫描速度和后加速电场的设计, 可在光电阴极4 mm×10 μm的范围内实现100 fs量级的时间分辨率. 通过优化设计加速电极结构, 使光电阴极有效探测范围内的电子均可在15 kV/mm量级的强电场中加速运行, 有效地抑制了电子脉冲的物理时间弥散; 在阳极入口处放置窄狭缝以减小大角度光电子引起的时空弥散对性能的影响; 最后在荧光屏处设置+5000 V的高电位, 以缩短光电子在等位区的渡越时间, 进一步减小空间电荷效应引起的时间弥散. 最终, 此设计方法能够将条纹管的时间分辨率提高至百飞秒量级.
    Reducing the space charge effect and the time dispersion caused by the edge field effect of the scanning deflection system is the key to realizing a 100-fs streak tube. In this paper, a novel fs streak tube is proposed and designed. The factors affecting its temporal resolution are analyzed theoretically and the specifications are given. Parameters including the electric field distribution and electron transmittance of the two common acceleration systems (planar cathode-mesh accelerating electrode and planar cathode-slit accelerating electrode) are compared with each other and analyzed theoretically. The results show that although the electric field distribution formed by the planar cathode (mesh accelerating electrode) can form uniform electric field, the electron transmittance is very low; planar cathode-slit accelerating structure will defocus the photoelectron beam along the scanning direction, but the electron transmittance in the effective detection range of the cathode is as high as 100%. The defocusing of the photoelectron beam can be removed by setting a narrow slit in front of the anode. The focusing electrode adopts two sets of plate-like structures which are vertically positioned in front and back to form a one-dimensional focusing electric fields along the scanning direction and the slit direction, respectively. The spatial focusing electrode is arranged close to the phosphor screen, which is beneficial to pushing back the cross-point of the electron beam along the spatial direction. Thus, the electron transit time dispersion in the condition of large electron density will decrease. At the same time, the anode can provide a post-accelerating voltage of +5000 V, which is beneficial to shortening the transit time and dispersion of the photoelectrons, thereby improving the temporal resolution. Based on the above theoretical analysis, a novel femtosecond streak tube is designed by using the planar cathode-slit accelerating electrode, anisotropic focusing system and post-accelerating method. The influence of the anode slit width on the spatial and temporal resolution is simulated. The results show that the temporal resolution deteriorates with the increase of the anode slot width (10-50 μm), due to the fact that the increase of the anode slit width will lead to the gradual increase of the size of the electron spot along the scanning direction, which will lead to the increase of the technical time dispersion. In addition, this study gives the simulation results of the femtosecond streak tube when the anode slit width is in a range of 10-50 μm. The results show that the static spatial resolution is higher than 100 lp/mm at MTF = 10%, dynamic spatial resolution is higher than 29 lp/mm at MTF = 10%, the temporal resolution is better than 122 fs in the range of 4-mm cathode effective detection length. When the effective detection length of the cathode is increased to 8 mm, the dynamic spatial resolution of the streak tube is higher than 22 lp/mm at MTF = 10%, and the temporal resolution is better than 191 fs.
      通信作者: 薛彦华, xueyanhua@opt.ac.cn ; 田进寿, tianjs@opt.ac.cn
    • 基金项目: 2022年度江苏省高等学校基础科学(自然科学)研究面上项目(批准号: 22KJD140003)、中国科学院科研仪器设备研制项目(批准号: GJJSTD20220006)、中国科学院战略性先导科技专项A类(批准号: XDA25030900)和中国科学院青年创新促进会(批准号: 2021402)资助的课题.
      Corresponding author: Xue Yan-Hua, xueyanhua@opt.ac.cn ; Tian Jin-Shou, tianjs@opt.ac.cn
    • Funds: Project supported by the Nature Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJD140003), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTD20220006), the Strategic Priority Research Program of Chinese Academy of Sciences (A) (Grant No. XDA25030900), and the Youth Innovation Promotion Association CAS (Grant No. 2021402).
    [1]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M, Auret F D 2010 Rev. Sci. Instrum. 81 105103Google Scholar

    [2]

    Musumeci P, Moody J T, Scoby C M, Gutierrez M S, Tran T 2009 Rev. Sci. Instrum. 80 013302Google Scholar

    [3]

    Pei C Q, Wu S L, Luo D, Wen W L, Xun J K, Tian J S, Zhang M R, Chen P, Chen J Z, Liu R 2017 Nucl. Instrum. Meth. A 855 148Google Scholar

    [4]

    Courtney-Pratt J S 1949 J. Research: A Journal of Science and its Applications. 2 287

    [5]

    罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿 2020 物理学报 69 052901Google Scholar

    Luo D, Hui D D, Wen W L, Li L L, Xin L W, Zhong Z Y, Ji C, Chen P, He K, Wang X, Tian J S 2020 Acta Phys. Sin. 69 052901Google Scholar

    [6]

    田进寿 2020 强激光与粒子束 32 112003Google Scholar

    Tian J 2020 High Power Laser Part. Beams 32 112003Google Scholar

    [7]

    Gallant P, Forget P, Dorchies F, Jiang Z, Kieffer J C 2000 Rev. Sci. Instrum. 71 3627Google Scholar

    [8]

    Feng J, Shin H J, Nasiatka J R, et al. 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [9]

    Shakya M M, Chang Z H 2005 Appl. Phys. Lett. 87 041103Google Scholar

    [10]

    Kinoshita K, Ishihara Y, Ai T, Hino S, Inagaki Y, Mori K, Goto M, Niikura F, Takahashi A, Uchiyama K, Abe S 2016 Proceedings of the 31st International Congress on High-speed Imaging and Photonic Osaka, Japan, November 7–10, 2016 p305

    [11]

    柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜 2021 物理学报 70 218502Google Scholar

    Liu X L, Tian J S, Tian L P, Chen P, Zhang M R, Xue Y H, Li Y H, Fang Y M, Xue X Y, Liu B Y, Gou Y S 2021 Acta Phys. Sin. 70 218502Google Scholar

    [12]

    Tian L P, Shen L B, Li L L, Wang X, Chen P, Wang J F, Chen L, Zhao W, Tian J S 2021 Optik 242 166791Google Scholar

    [13]

    Macphee A G, Dymoke-Bradshaw A K, Hares J D, Gassett J, Hatch B W, Meadowcroft A L, Bell P M, Bradley D K, Datte P S, Landen O L, Palmer N E, Piston K W, Rekow V V, Hilsabeck T J, Kilkenny J D 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [14]

    Tian L P, Shen L B, Chen L, Li L L, Tian J S, Chen P, Zhao W 2021 Meas. Sci. Rev. 21 191Google Scholar

    [15]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [16]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

  • 图 1  加速结构对电势的影响 (a) P-S加速结构; (b) P-M加速结构

    Fig. 1.  Influence of the accelerating electrode on potential distribution: (a) P-S accelerating electrode; (b) P-M accelerating electrode.

    图 2  加速结构对电子透过率的影响

    Fig. 2.  Influence of the accelerating electrode on electron transmittance.

    图 3  狭缝宽度对电子斑的影响, 蓝色拟合曲线表示电子转移效率, 红色拟合曲线表示屏幕上沿扫描方向的电子斑点宽度

    Fig. 3.  Variation of electron transfer efficiency and width of electron spot along scanning direction on screen with width of anode. The blue fitted curve represents the electron transfer effiency, and the red fitted curve represents the width electron spot along scanning direction on screen.

    图 4  飞秒条纹管结构示意图

    Fig. 4.  Schematic diagram of the femtosecond streak tube.

    图 5  飞秒条纹管内部电势分布 (a) 子午面电势分布; (b) 弧矢面电势分布

    Fig. 5.  Distribution of potential in the femtosecond streak tube: (a) On the meridian direction plane; (b) on the sagittal direction plane.

    图 6  离轴不同距离处发射的电子束的静态空间调制传递函数(S-SMTF)

    Fig. 6.  S-SMTF of the electrons emitted from different off-axis distance.

    图 7  扫描偏转系统 (a) 扫描偏转板端口设置; (b) 高线性斜坡扫描信号

    Fig. 7.  Deflection system: (a) The deflection plates settings; (b) swept voltage on the deflection plates.

    图 8  时间分辨电子源的初始分布 (a) 时间分布; (b) 能量分布.

    Fig. 8.  Initial distribution of the electron sources: (a) Time distribution; (b) energy distribution.

    图 9  四束狭缝型电子脉冲的扫描结果 (a) 荧光屏上电子脉冲的束斑分布; (b)扫描方向电子概率分布曲线

    Fig. 9.  Sweeping results of four electron pulses: (a) Beam spot of electron pulses on the screen; (b) probability distribution of electrons in scanning direction.

    图 10  动态空间调制传递函数 (a) 狭缝方向; (b) 扫描方向

    Fig. 10.  Dynamic spatial modulation transfer function: (a) Slit direction; (b) scanning direction.

    表 1  不同阳极狭缝宽度下飞秒管的时空分辨率

    Table 1.  Spatio-temporal resolution versus different width of anode slit.

    阳极狭缝宽度dAnode/μm狭缝方向动态空间
    分辨率/(lp·mm–1)
    扫描方向动态空间
    分辨率/(lp·mm–1)
    动态时间分辨率
    (点源发射)/fs
    动态时间分辨率
    (狭缝发射)/fs
    10245974782
    20155717686
    30112478493
    40923793103
    507129116122
    下载: 导出CSV

    表 2  不同阴极有效长度及阳极狭缝宽度下飞秒管的时空分辨率

    Table 2.  Spatio-temporal resolution versus different effective cathode length and anode slit width.

    类别 性能指标 阳极狭缝宽度 dAnode/μm
    10 20 30 40 50
    阴极有效长度4 mm 狭缝方向动态空间分辨率/(lp·mm–1) 245 155 112 92 71
    扫描方向动态空间分辨率/(lp·mm–1) 97 71 47 37 29
    动态时间分辨率(狭缝发射)/fs 82 86 93 103 122
    阴极有效长度8 mm 狭缝方向动态空间分辨率/(lp·mm–1) 72 48 33 26 22
    扫描方向动态空间分辨率/(lp·mm–1) 97 71 47 36 29
    动态时间分辨率(狭缝发射)/fs 166 170 175 184 191
    下载: 导出CSV
  • [1]

    Kassier G H, Haupt K, Erasmus N, Rohwer E G, Bergmann H M, Schwoerer H, Coelho S M M, Auret F D 2010 Rev. Sci. Instrum. 81 105103Google Scholar

    [2]

    Musumeci P, Moody J T, Scoby C M, Gutierrez M S, Tran T 2009 Rev. Sci. Instrum. 80 013302Google Scholar

    [3]

    Pei C Q, Wu S L, Luo D, Wen W L, Xun J K, Tian J S, Zhang M R, Chen P, Chen J Z, Liu R 2017 Nucl. Instrum. Meth. A 855 148Google Scholar

    [4]

    Courtney-Pratt J S 1949 J. Research: A Journal of Science and its Applications. 2 287

    [5]

    罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿 2020 物理学报 69 052901Google Scholar

    Luo D, Hui D D, Wen W L, Li L L, Xin L W, Zhong Z Y, Ji C, Chen P, He K, Wang X, Tian J S 2020 Acta Phys. Sin. 69 052901Google Scholar

    [6]

    田进寿 2020 强激光与粒子束 32 112003Google Scholar

    Tian J 2020 High Power Laser Part. Beams 32 112003Google Scholar

    [7]

    Gallant P, Forget P, Dorchies F, Jiang Z, Kieffer J C 2000 Rev. Sci. Instrum. 71 3627Google Scholar

    [8]

    Feng J, Shin H J, Nasiatka J R, et al. 2007 Appl. Phys. Lett. 91 134102Google Scholar

    [9]

    Shakya M M, Chang Z H 2005 Appl. Phys. Lett. 87 041103Google Scholar

    [10]

    Kinoshita K, Ishihara Y, Ai T, Hino S, Inagaki Y, Mori K, Goto M, Niikura F, Takahashi A, Uchiyama K, Abe S 2016 Proceedings of the 31st International Congress on High-speed Imaging and Photonic Osaka, Japan, November 7–10, 2016 p305

    [11]

    柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜 2021 物理学报 70 218502Google Scholar

    Liu X L, Tian J S, Tian L P, Chen P, Zhang M R, Xue Y H, Li Y H, Fang Y M, Xue X Y, Liu B Y, Gou Y S 2021 Acta Phys. Sin. 70 218502Google Scholar

    [12]

    Tian L P, Shen L B, Li L L, Wang X, Chen P, Wang J F, Chen L, Zhao W, Tian J S 2021 Optik 242 166791Google Scholar

    [13]

    Macphee A G, Dymoke-Bradshaw A K, Hares J D, Gassett J, Hatch B W, Meadowcroft A L, Bell P M, Bradley D K, Datte P S, Landen O L, Palmer N E, Piston K W, Rekow V V, Hilsabeck T J, Kilkenny J D 2016 Rev. Sci. Instrum. 87 11E202Google Scholar

    [14]

    Tian L P, Shen L B, Chen L, Li L L, Tian J S, Chen P, Zhao W 2021 Meas. Sci. Rev. 21 191Google Scholar

    [15]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [16]

    田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿 2018 物理学报 67 188501Google Scholar

    Tian L P, Li L L, Wen W L, Wang X, Chen P, Lu Y, Wang J F, Zhao W, Tian J S 2018 Acta Phys. Sin. 67 188501Google Scholar

  • [1] 田丽萍, 沈令斌, 陈萍, 刘玉柱, 陈琳, 惠丹丹, 陈希儒, 赵卫, 薛彦华, 田进寿. 基于各向异性及后加速技术的百飞秒时间分辨条纹管设计. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231382
    [2] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究. 物理学报, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [3] 王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩. 光电倍增管时间测量误差补偿方法研究. 物理学报, 2022, 71(22): 222901. doi: 10.7498/aps.71.20221193
    [4] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [5] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像. 物理学报, 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [6] 汤永辉, 郑铸, 谢实梦, 黄林, 蒋华北. 基于多路放大器加法电路噪声抑制的热声成像技术. 物理学报, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [7] 张倩, 王亚辉, 张明江, 张建忠, 乔丽君, 王涛, 赵乐. 毫米级高分辨率的混沌激光分布式光纤测温技术. 物理学报, 2019, 68(10): 104208. doi: 10.7498/aps.68.20190018
    [8] 高飞, 南恒帅, 黄波, 汪丽, 李仕春, 王玉峰, 刘晶晶, 闫庆, 宋跃辉, 华灯鑫. 紫外域多纵模高光谱分辨率激光雷达探测气溶胶的技术实现和系统仿真. 物理学报, 2018, 67(3): 030701. doi: 10.7498/aps.67.20172036
    [9] 田丽萍, 李立立, 温文龙, 王兴, 陈萍, 卢裕, 王俊锋, 赵卫, 田进寿. 小型条纹管数值模拟及实验研究. 物理学报, 2018, 67(18): 188501. doi: 10.7498/aps.67.20180643
    [10] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量. 物理学报, 2017, 66(9): 090704. doi: 10.7498/aps.66.090704
    [11] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [12] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究. 物理学报, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [13] 梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴. 全光固体条纹相机的理论及其静态实验研究. 物理学报, 2014, 63(6): 060702. doi: 10.7498/aps.63.060702
    [14] 刘蓉, 田进寿, 李昊, 王强强, 王超, 温文龙, 卢裕, 刘虎林, 曹希斌, 王俊锋, 徐向晏, 王兴. 行波偏转器前置短磁聚焦条纹变像管理论设计与实验研究. 物理学报, 2014, 63(5): 058501. doi: 10.7498/aps.63.058501
    [15] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [16] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究. 物理学报, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [17] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究. 物理学报, 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [18] 张春艳, 赵清, 傅立斌, 刘杰. 飞秒强激光场中氢原子团簇的各向异性膨胀. 物理学报, 2012, 61(14): 143601. doi: 10.7498/aps.61.143601
    [19] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [20] 何开元, 熊湘沅. 非晶合金带制备态平面磁各向异性与技术磁性的关系. 物理学报, 1991, 40(11): 1875-1878. doi: 10.7498/aps.40.1875
计量
  • 文章访问数:  1941
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-09-20
  • 上网日期:  2023-12-05
  • 刊出日期:  2023-12-20

/

返回文章
返回