搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征

曾祥昱 王薇 刘诚 单昌功 谢宇 胡启后 孙友文 PolyakovAlexander Viktorovich

引用本文:
Citation:

利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征

曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich

Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy

Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich
PDF
HTML
导出引用
  • 大气二氯二氟甲烷(CCl2F2, CFC-12)是人工合成的化学制剂, 对平流层臭氧可产生严重的破坏和损耗. 研究大气CFC-12的探测技术并获取其时空分布和变化, 对了解区域氟氯烃气体变化趋势以及对平流层臭氧的影响具有重要意义. 本文利用地基高分辨率傅里叶变换红外光谱 (Fourier transform infrared spectroscopy, FTIR) 技术研究大气CFC-12的垂直分布和柱浓度的反演方法, 基于最优估计算法反演2017—2020年合肥地区大气CFC-12的垂直廓线和柱总量. 合肥大气CFC-12反演获得的垂直廓线表明, 大气CFC-12在对流层以及低平流层处具有较高浓度, 在垂直高度40 km以上浓度极低. 合肥地区大气CFC-12的柱浓度含量呈现出夏季浓度较高, 冬季与初春浓度较低的季节变化; 观测期间大气CFC-12柱浓度呈现缓慢下降的趋势, 年均变化率为–0.68%. 将地基观测数据与ACE-FTS卫星观测数据进行比对, 在高度范围16—28 km内两个CFC-12偏柱总量的相关性系数为0.73, 可见地基和卫星数据具有较好的一致性. 长期观测结果表明了地基高分辨率FTIR技术在观测大气中CFC-12的浓度垂直分布与季节变化上具有高的准确性和可靠性.
    Atmospheric dichlorodifluoromethane (CCl2F2, CFC-12), as a synthetic chemical agent, is a main stratospheric ozone-depleting substance in atmosphere. Studies of the detection techniques and the temporal and spatial distribution of CFC-12 have great significance in understanding the variation trend of regional CFCs and their influence on stratospheric ozone. In this study, the method of retrieving the vertical profile and total column for CFC-12 is studied based on ground-based high-resolution Fourier transform infrared spectroscopy (FTIR). The spectral window for CFC-12 retrieval is selected as 922.5–923.6 cm–1, where the interfering gases are H2O, O3, and CO2. The result of error analysis shows that the average total error is 1.27%, including the systematic error 0.76% and random error 1.02%. The vertical profiles and total columns of atmospheric CFC-12 in Hefei during the period from 2017 to 2020 were retrieved based on the optimal estimation algorithm. The vertical profiles of CFC-12 show that the concentration of atmospheric CFC-12 is high in the troposphere and low stratosphere at the altitude of 0–20 km, and then decreases, very low at height above 40 km. The total column average kernel of retrieved CFC-12 profiles is higher at 15–20 km, and the typical signal degree of freedom of CFC-12 is 1.217. Moreover, the long-term total columns of atmosphere CFC-12 observed show obvious seasonal variation in Hefei. Total columns of atmosphere CFC-12 are higher in summer and lower in winter and early spring. The maximum monthly concentration of CFC-12 is about 1.13 × 1016 mol·cm–2 in July, and the minimum monthly concentration is 1.00 × 1016 mol·cm–2 in March. Also, the annual average total columns of atmospheric CFC-12 decreased slightly from 2017 to 2020, with an increasing rate of –0.68%. This reflects the effect of China's implementation of CFCs control ban policy. Furthermore, in order to verify the accuracy of ground-based FTIR observation, we compare our ground-based observation data with ACE-FTS/ SCISAT satellite version 4.1 level 2 data. There are 16 pairs of matching points between satellite observation and ground observation data, and the correlation coefficient is 0.73 for two CFC-12 partial columns at the height of 16–28 km, showing good agreement between ground-based FTIR data and satellite data. The long-term observations demonstrate the accuracy and reliability of ground-based high-resolution FTIR technology for detecting the vertical distribution and seasonal variation of atmosphere CFC-12.
      通信作者: 王薇, wwang@aiofm.ac.cn ; 刘诚, chliu81@ustc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFC0214702, 2018YFC0213201)和国家自然科学基金(批准号: 41775025)资助的课题
      Corresponding author: Wang Wei, wwang@aiofm.ac.cn ; Liu Cheng, chliu81@ustc.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFC0214702, 2018YFC0213201) and the National Natural Science Foundation of China (Grant No. 41775025)
    [1]

    王凤, 张剑波, 冯金敏, 刘德英 2010 环境科学学报 30 1758

    Wang F, Zhang J B, Feng J M, Liu D Y 2010 Acta Sci. Circum. 30 1758

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Hansen J, Lacis A, Prather M 1989 J. Geophys. Res. Atmos. 94 16417Google Scholar

    [4]

    Zurer P 1995 Chem. Eng. News 73 25Google Scholar

    [5]

    Zhang F, Zhou L X, Yao B, Zhang X C, Xu L, Zhang X L, Zhou H G, Dong F, Zhou L Y 2011 Sci. Chin.-Earth Sci. 54 298Google Scholar

    [6]

    Yang M M, Yang F C, Li H L, Li T, Cao F F, Nie X L, Zhen J B, Li P Y, Wang Y 2021 Sci. Total Environ. 754 142290Google Scholar

    [7]

    张芳, 王新明, 李龙凤, 易志刚, 周凌晞, 盛国英, 傅家谟 2006 地球与环境 34 19

    Zhang F, Wang X M, Yi Z G, Li L F, Zhou L X, Donald R B, Sheng G Y, Fu J M 2006 Earth Environ. 34 19

    [8]

    Zhang F, Zhou L, Yao B, Vollmer M K, Greally B R, Simmonds P G, Reimann S, Stordal F, Maione M, Xu L 2010 Atmos. Environ. 44 4454Google Scholar

    [9]

    Tegtmeier S, Hegglin M I, Anderson J, Funke B, Gille J, Jones A, Smith L, von Clarmann T, Walker K A 2016 Earth Syst. Sci. Data 8 61Google Scholar

    [10]

    Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D T, Notholt J, Warneke T 2017 Atmos. Meas. Tech. 10 2627Google Scholar

    [11]

    Yin H, Sun Y W, Liu C, Lu X, Smale D, Blumenstock T, Nagahama T, Wang W, Tian Y, Hu Q H, Shan C G, Zhang H F, Liu J G 2020 Opt. Express 28 8041Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    章惠芳, 王薇, 刘诚, 单昌功, 胡启后, 孙友文, Jones N 2020 光学学报 40 23

    Zhang H F, Wang W, Liu C, Shan C G, Hu Q H, Sun Y W, Jones N 2020 Acta Optic. Sin. 40 23

    [14]

    Notholt J 1994 Geophys. Res. Lett. 21 2385Google Scholar

    [15]

    Mahieu E, Rinsland C P, Gardiner T, Zander R, Demoulin P, Chipperfield M P, Ruhnke R, Chiou L S, De Mazière M 2010 European Geosciences Union Vienna, Austria, May 2–7, 2010 p2420

    [16]

    Zhou M, Vigouroux C, Langerock B, Wang P, Dutton G, Hermans C, Kumps N, Metzger J-M, Toon G, De Maziere M 2016 Atmos. Meas. Tech. 9 5621Google Scholar

    [17]

    Polyakov A V, Timofeyev Y M, Virolainen Y A, Makarova M V, Poberovskii A V, Imhasin H K 2018 Izv. Atmos. Oceanic Phys. 54 487Google Scholar

    [18]

    Rodgers C D 1990 J. Geophys. Res. Atmos. 95 5587Google Scholar

    [19]

    Rodgers C D 2000 Inverse methods for atmospheric sounding: theory and practice (Vol. 2) (Singapore: World Scientific) p43

    [20]

    Wiacek A, Taylor J R, Strong K, Saari R, Kerzenmacher T E, Jones N B, Griffith D W T 2007 J. Atmos. Oceanic Technol. 24 432Google Scholar

    [21]

    Harrison J J 2015 Atmos. Meas. Tech. 8 3197Google Scholar

    [22]

    Wang Z, Deutscher N M, Warneke T, Notholt J, Dils B, Griffith D, Schmidt M, Ramonet M, Gerbig C 2014 Atmos. Meas. Tech. 7 3295Google Scholar

    [23]

    Polyakov A V, Virolainen Y A, Makarova M V 2019 J. Appl. Spectrosc. 86 449Google Scholar

    [24]

    Mahieu E, Duchatelet P, Demoulin P, et al. 2008 Atmos. Chem. Phys. 8 6199Google Scholar

    [25]

    Steffen J, Bernath P F, Boone C D 2019 J. Quant. Spectrosc. Radiat. Transfer 238 106619Google Scholar

  • 图 1  (a) 观测地点; (b) 地基高分辨率傅里叶变换红外光谱仪

    Fig. 1.  (a) Observation site; (b) ground-based high resolution FTS.

    图 2  CFC-12在922.5—923.6 cm–1波段窗口的光谱拟合结果

    Fig. 2.  Spectral fitting of CFC-12 in the microwindow of 922.5–923.6 cm–1.

    图 3  CFC-12的先验垂直廓线与反演垂直廓线

    Fig. 3.  Retrieved vertical profile and a priori vertical profile of CFC-12.

    图 4  CFC-12典型的反演垂直廓线平均核

    Fig. 4.  Typical averaging kernels of retrieved CFC-12 profiles

    图 5  CFC-12反演柱总量平均核

    Fig. 5.  Total column average kernel of retrieved CFC-12 profiles.

    图 6  CFC-12典型的信号自由度

    Fig. 6.  Typical signal degree of freedom of CFC-12.

    图 7  2017—2020年CFC-12每月柱浓度时间序列

    Fig. 7.  The time series of CFC-12 monthly total column from 2017 to 2020.

    图 8  2017—2020年CFC-12柱浓度时间序列

    Fig. 8.  The time series of CFC-12 total column from 2017 to 2020.

    图 9  地基FTIR观测与卫星ACE-FTS观测CFC-12偏柱浓度对比相关图

    Fig. 9.  Comparison of partial column of CFC-12 between ground-based FTIR observation and ACE-FTS observation.

    表 1  反演参数与气体线强

    Table 1.  Retrieval parameters and line intensity.

    目标气体 干扰气体
    CCl2F2 H2OO3CO2
    线强/
    (cm–1·(mol·cm–2))
    2.45
    ×10–20
    6.01
    ×10–26
    2.07
    ×10–25
    3.11
    ×10–24
    波数/cm–1923.08 923.07923.02922.91
    下载: 导出CSV

    表 2  误差分析中的参数不确定性

    Table 2.  Parameter uncertainties used in the error estimation.

    参数系统不确定性随机不确定性
    温度/K5(对流层)5(对流层)
    5(平流层)5(平流层)
    太阳天顶角/(º)0.0250.025
    零偏移0.0010.001
    仪器线型/rad0.010.01
    视场角0.010.01
    线强参数/%1
    谱线压力展宽/%1
    下载: 导出CSV

    表 3  CFC-12反演的系统误差和随机误差

    Table 3.  Systematic errors and random errors for CFC-12 retrieval.

    误差系统误差/%随机误差/%
    平滑误差0.641
    反演参数0.001
    测量误差0.704
    干扰气体0.096
    温度0.1230.724
    太阳天顶角0.0190.019
    零偏移0.0440.044
    线强参数0.378
    谱线压力展宽0.040
    仪器线型0.0040.004
    总误差0.761.02
    下载: 导出CSV
  • [1]

    王凤, 张剑波, 冯金敏, 刘德英 2010 环境科学学报 30 1758

    Wang F, Zhang J B, Feng J M, Liu D Y 2010 Acta Sci. Circum. 30 1758

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Hansen J, Lacis A, Prather M 1989 J. Geophys. Res. Atmos. 94 16417Google Scholar

    [4]

    Zurer P 1995 Chem. Eng. News 73 25Google Scholar

    [5]

    Zhang F, Zhou L X, Yao B, Zhang X C, Xu L, Zhang X L, Zhou H G, Dong F, Zhou L Y 2011 Sci. Chin.-Earth Sci. 54 298Google Scholar

    [6]

    Yang M M, Yang F C, Li H L, Li T, Cao F F, Nie X L, Zhen J B, Li P Y, Wang Y 2021 Sci. Total Environ. 754 142290Google Scholar

    [7]

    张芳, 王新明, 李龙凤, 易志刚, 周凌晞, 盛国英, 傅家谟 2006 地球与环境 34 19

    Zhang F, Wang X M, Yi Z G, Li L F, Zhou L X, Donald R B, Sheng G Y, Fu J M 2006 Earth Environ. 34 19

    [8]

    Zhang F, Zhou L, Yao B, Vollmer M K, Greally B R, Simmonds P G, Reimann S, Stordal F, Maione M, Xu L 2010 Atmos. Environ. 44 4454Google Scholar

    [9]

    Tegtmeier S, Hegglin M I, Anderson J, Funke B, Gille J, Jones A, Smith L, von Clarmann T, Walker K A 2016 Earth Syst. Sci. Data 8 61Google Scholar

    [10]

    Wang W, Tian Y, Liu C, Sun Y W, Liu W Q, Xie P H, Liu J G, Xu J, Morino I, Velazco V A, Griffith D T, Notholt J, Warneke T 2017 Atmos. Meas. Tech. 10 2627Google Scholar

    [11]

    Yin H, Sun Y W, Liu C, Lu X, Smale D, Blumenstock T, Nagahama T, Wang W, Tian Y, Hu Q H, Shan C G, Zhang H F, Liu J G 2020 Opt. Express 28 8041Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    章惠芳, 王薇, 刘诚, 单昌功, 胡启后, 孙友文, Jones N 2020 光学学报 40 23

    Zhang H F, Wang W, Liu C, Shan C G, Hu Q H, Sun Y W, Jones N 2020 Acta Optic. Sin. 40 23

    [14]

    Notholt J 1994 Geophys. Res. Lett. 21 2385Google Scholar

    [15]

    Mahieu E, Rinsland C P, Gardiner T, Zander R, Demoulin P, Chipperfield M P, Ruhnke R, Chiou L S, De Mazière M 2010 European Geosciences Union Vienna, Austria, May 2–7, 2010 p2420

    [16]

    Zhou M, Vigouroux C, Langerock B, Wang P, Dutton G, Hermans C, Kumps N, Metzger J-M, Toon G, De Maziere M 2016 Atmos. Meas. Tech. 9 5621Google Scholar

    [17]

    Polyakov A V, Timofeyev Y M, Virolainen Y A, Makarova M V, Poberovskii A V, Imhasin H K 2018 Izv. Atmos. Oceanic Phys. 54 487Google Scholar

    [18]

    Rodgers C D 1990 J. Geophys. Res. Atmos. 95 5587Google Scholar

    [19]

    Rodgers C D 2000 Inverse methods for atmospheric sounding: theory and practice (Vol. 2) (Singapore: World Scientific) p43

    [20]

    Wiacek A, Taylor J R, Strong K, Saari R, Kerzenmacher T E, Jones N B, Griffith D W T 2007 J. Atmos. Oceanic Technol. 24 432Google Scholar

    [21]

    Harrison J J 2015 Atmos. Meas. Tech. 8 3197Google Scholar

    [22]

    Wang Z, Deutscher N M, Warneke T, Notholt J, Dils B, Griffith D, Schmidt M, Ramonet M, Gerbig C 2014 Atmos. Meas. Tech. 7 3295Google Scholar

    [23]

    Polyakov A V, Virolainen Y A, Makarova M V 2019 J. Appl. Spectrosc. 86 449Google Scholar

    [24]

    Mahieu E, Duchatelet P, Demoulin P, et al. 2008 Atmos. Chem. Phys. 8 6199Google Scholar

    [25]

    Steffen J, Bernath P F, Boone C D 2019 J. Quant. Spectrosc. Radiat. Transfer 238 106619Google Scholar

  • [1] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [2] 任红梅, 李昂, 胡肇焜, 黄业园, 徐晋, 谢品华, 钟鸿雁, 李晓梅. 基于多轴差分吸收光谱技术测量青岛市大气水汽垂直柱浓度及垂直分布. 物理学报, 2020, 69(20): 204204. doi: 10.7498/aps.69.20200588
    [3] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [4] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究. 物理学报, 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [5] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证. 物理学报, 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [6] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [7] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [8] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [9] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清. 多轴差分吸收光谱技术测量NO2对流层垂直分布及垂直柱浓度. 物理学报, 2013, 62(20): 200705. doi: 10.7498/aps.62.200705
    [10] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [11] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清. 多轴差分吸收光谱技术反演气溶胶消光系数垂直廓线. 物理学报, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [12] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [13] 宋俊玲, 洪延姬, 王广宇, 潘虎. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究. 物理学报, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [14] 程胡华, 钟中, 岑瑾, 邓少格. 估算大气重力波参数的垂直扰动廓线获取新方法. 物理学报, 2012, 61(18): 189201. doi: 10.7498/aps.61.189201
    [15] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [16] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [17] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [18] 李素文, 谢品华, 刘文清, 司福祺, 李 昂, 彭夫敏. 发光二极管在差分吸收光谱系统中的应用研究. 物理学报, 2008, 57(3): 1963-1967. doi: 10.7498/aps.57.1963
    [19] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] 谭维翰. 红宝石吸收光谱中锐线能级与分裂计算. 物理学报, 1963, 19(7): 409-424. doi: 10.7498/aps.19.409
计量
  • 文章访问数:  4165
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-05-19
  • 上网日期:  2021-10-08
  • 刊出日期:  2021-10-20

/

返回文章
返回