搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合相位调控的波束转向可控反射型超表面

魏涛 张玉洁 葛宏义 蒋玉英 吴旭阳 孙振雨 季晓迪 补雨薇 贾柯柯

引用本文:
Citation:

复合相位调控的波束转向可控反射型超表面

魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯
cstr: 32037.14.aps.73.20240764

Composite phase modulated beam steering controllable reflective metasurface

Wei Tao, Zhang Yu-Jie, Ge Hong-Yi, Jiang Yu-Ying, Wu Xu-Yang, Sun Zhen-Yu, Ji Xiao-Di, Bu Yu-Wei, Jia Ke-Ke
cstr: 32037.14.aps.73.20240764
PDF
HTML
导出引用
  • 基于Pancharatnam-Berry相位原理和相变材料VO2的复合相位调控机制, 设计了一种波束转向可控的反射型超表面. 基于Pancharatnam-Berry相位原理对超表面单元顶层结构进行旋转编码, 获得所需的相位梯度, 而超表面VO2层绝缘态-金属态的转换, 可使预设超表面的相位梯度改变, 进而改变反射波束的转向. 仿真测试结果表明: 当VO2处于绝缘态时, 在1.1—2.0 THz工作频段内, 超表面可使垂直入射的圆极化波以特定的角度出射, 其反射效率大于80%; 当VO2处于金属态时, 对于同一超表面的相同工作频段, 超表面将入射的太赫兹波镜面反射, 反射效率接近100%. 这一设计对未来太赫兹反射波束调控领域具有潜在的应用价值.
    Terahertz metasurface functional devices as an effective method to control terahertz waves have attracted extensive attention from researchers. In order to enhance the functionality and flexibility of the metasurface and adapt to diverse application scenarios and demands, a beam-steering controllable reflective metasurface is designed by combining the Pancharatnam-Berry phase principle and the phase change material vanadium dioxide in this work. The metasurface unit consists of five layers, they being the top layer that is a metal patterned layer, the third layer that is made of vanadium dioxide and located between the dielectric layers with different thickness, the dielectric layer that is made of polytetrafluoroethylene (PTFE), and the bottom layer that serves as a metal reflective layer. The metasurface units are rotated based on the Pancharatnam-Berry phase principle to obtain four metasurface units with fixed phase differences in between, after which the metasurface units are arranged in two dimensions based on the generalized Snell reflection law to obtain the desired phase-gradient deflected reflection beam. The insulating state-metallic state transition of the vanadium dioxide layer on the metasurface can change the phase gradient of the preset metasurface, thereby realizing the on/off function of deflection. The simulation results show that when the vanadium dioxide is in the insulating state, the phase gradient of the designed metasurface appears, and the metasurface can deflect the vertically incident circularly polarized wave with specific angle anomalies in a operating band of 1.1–2.0 THz; when the vanadium dioxide is in the metallic state, for the same operating band of the same metasurface, the phase gradient of the metasurface disappears, and the metasurface mirror reflects the vertically incident circularly polarized waves, thereby realizing the function switching. This design provides new possibilities for modulating the terahertz reflected beam, which will have potential applications in terahertz wireless communication and radar systems.
      通信作者: 葛宏义, gehongyi2004@163.com
    • 基金项目: 国家自然科学基金(批准号: 62271191, 61975053)、河南省自然科学基金(批准号: 222300420040)、河南工业大学创新基金(批准号: 2021ZKCJ04)、河南省重点科技计划(批准号: 222102110246, 222103810072)和河南省高校科技创新人才支持计划(批准号: 23HASTIT024, 22HASTIT017)资助的课题.
      Corresponding author: Ge Hong-Yi, gehongyi2004@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271191, 61975053), the Natural Science Foundation of Henan Province, China (Grant No. 222300420040), the Innovative Funds Plan of Henan University of Technology (Grant No. 2021ZKCJ04), the Key Science and Technology Program of Henan Province, China (Grant Nos. 222102110246, 222103810072), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant Nos. 23HASTIT024, 22HASTIT017).
    [1]

    Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar

    [2]

    Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar

    [3]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [4]

    Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar

    [5]

    Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar

    [6]

    Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar

    [7]

    Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar

    [8]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar

    [10]

    Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar

    [11]

    Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar

    [12]

    Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar

    [13]

    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar

    [14]

    Fedotov V 2021 Nat. Photonics 15 715Google Scholar

    [15]

    Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar

    [16]

    Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar

    [17]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [18]

    汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 物理学报 72 098101Google Scholar

    Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar

    [19]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [20]

    Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar

    [21]

    Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar

    [22]

    Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar

    [23]

    Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar

    [24]

    Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar

    [25]

    Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar

    [26]

    Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar

    [27]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [28]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar

    [29]

    Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2

    [30]

    杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar

    Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar

    [31]

    Li J S, Yao J Q 2018 IEEE Photonics J. 10 1

    [32]

    Born M, Wolf E 2013 Phys. Today 53 77

    [33]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar

    [35]

    Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar

  • 图 1  超表面单元 (a)三维示意图; (b)俯视图; (c)正视图; (d)旋转结构

    Fig. 1.  Metasurface units: (a) 3D schematic diagram; (b) top view; (c) front view; (d) rotating structure.

    图 2  x极化波和y极化波垂直入射时, 超表面单元的同极化反射幅度(a)和相位(b)

    Fig. 2.  The co-polarized reflection amplitude (a) and phase (b) of the metasurface unit when x-polarized and y-polarized waves are vertically incident.

    图 3  VO2处于绝缘态, LCP波垂直入射时, 不同旋转角α对应的超表面单元的同极化反射幅度(a)和相位(b)

    Fig. 3.  VO2 is in an insulating state, with different rotation angles when LCP waves are vertically incident α, the amplitude (a) and phase (b) of co-polarized reflection of corresponding metasurface units.

    图 4  表面电流分布 (a)—(d) VO2处于绝缘态; (e)—(h) VO2处于金属态

    Fig. 4.  Surface current distribution: (a)–(d) VO2 is in an insulating state; (e)–(h) VO2 is in a metallic state.

    图 5  不同入射角度下, 线极化波激励下超表面单元的反射相位和幅度 (a), (b) VO2处于绝缘态时, 不同入射角度下的幅度变化和相位变化; (c), (d) VO2处于金属态时, 不同入射角度下的幅度变化和相位变化

    Fig. 5.  Reflection phase and amplitude of metasurface elements under linearly polarized wave excitation at different incident angles: (a), (b) Amplitude variation and phase change of VO2 at different incident angles when it is in an insulating state; (c), (d) amplitude variation and phase change of VO2 at different incident angles when it is in a metallic state.

    图 6  2-bit反射编码超表面, LCP波垂直入射 (a)超表面排布示意图; (b)超表面结构; (c) 1.1 THz处的三维远场散射图; (d) 1.1 THz处的归一化反射振幅图; (e) 2.0 THz处的三维远场散射图; (f) 2.0 THz处的归一化反射振幅图

    Fig. 6.  2-bit reflection encoding metasurface, LCP wave vertically incident: (a) Schematic diagram of metasurface layout; (b) metasurface structure; (c) 3D far-field scattering map at 1.1 THz; (d) normalized reflection amplitude map at 1.1 THz; (e) 3D far-field scattering map at 2.0 THz; (f) normalized reflection amplitude map at 2.0 THz.

    图 7  归一化远场辐射图

    Fig. 7.  Normalized far-field radiation pattern.

    图 8  归一化远场辐射图, 1.6 THz处不同入射角对应的反射角

    Fig. 8.  Normalized far-field radiation pattern, reflection angles corresponding to different incident angles at 1.6 THz.

    图 9  反射超表面 (a)超表面相位梯度改变示意图; (b)三维远场散射图

    Fig. 9.  Reflective metasurface: (a) Schematic diagram of phase gradient change on metasurface; (b) 3D far-field scattering map.

    表 1  超表面单元的主要参数

    Table 1.  Main parameters of metasurface units.

    Parameter D R1 R2 L1 L2 K1 K2 T1 T2 T3 H1 H2
    Value/μm 110 10 19 60 51 8 8 0.2 0.3 0.2 3 26
    下载: 导出CSV

    表 2  超表面单元

    Table 2.  Metasurface units.

    α45°135°90°
    俯视图
    2-bit00011011
    下载: 导出CSV
  • [1]

    Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar

    [2]

    Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar

    [3]

    Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar

    [4]

    Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar

    [5]

    Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar

    [6]

    Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar

    [7]

    Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar

    [8]

    Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar

    [10]

    Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar

    [11]

    Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar

    [12]

    Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar

    [13]

    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar

    [14]

    Fedotov V 2021 Nat. Photonics 15 715Google Scholar

    [15]

    Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar

    [16]

    Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar

    [17]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [18]

    汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 物理学报 72 098101Google Scholar

    Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar

    [19]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar

    [20]

    Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar

    [21]

    Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar

    [22]

    Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar

    [23]

    Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar

    [24]

    Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar

    [25]

    Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar

    [26]

    Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar

    [27]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [28]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar

    [29]

    Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2

    [30]

    杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar

    Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar

    [31]

    Li J S, Yao J Q 2018 IEEE Photonics J. 10 1

    [32]

    Born M, Wolf E 2013 Phys. Today 53 77

    [33]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [34]

    Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar

    [35]

    Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究. 物理学报, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [7] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, 2021, 70(17): 178102. doi: 10.7498/aps.70.20210344
    [10] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [11] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [12] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [13] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [16] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [17] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [18] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [19] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [20] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
计量
  • 文章访问数:  799
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-29
  • 修回日期:  2024-10-01
  • 上网日期:  2024-10-10
  • 刊出日期:  2024-11-20

/

返回文章
返回