-
基于Pancharatnam-Berry相位原理和相变材料VO2的复合相位调控机制, 设计了一种波束转向可控的反射型超表面. 基于Pancharatnam-Berry相位原理对超表面单元顶层结构进行旋转编码, 获得所需的相位梯度, 而超表面VO2层绝缘态-金属态的转换, 可使预设超表面的相位梯度改变, 进而改变反射波束的转向. 仿真测试结果表明: 当VO2处于绝缘态时, 在1.1—2.0 THz工作频段内, 超表面可使垂直入射的圆极化波以特定的角度出射, 其反射效率大于80%; 当VO2处于金属态时, 对于同一超表面的相同工作频段, 超表面将入射的太赫兹波镜面反射, 反射效率接近100%. 这一设计对未来太赫兹反射波束调控领域具有潜在的应用价值.Terahertz metasurface functional devices as an effective method to control terahertz waves have attracted extensive attention from researchers. In order to enhance the functionality and flexibility of the metasurface and adapt to diverse application scenarios and demands, a beam-steering controllable reflective metasurface is designed by combining the Pancharatnam-Berry phase principle and the phase change material vanadium dioxide in this work. The metasurface unit consists of five layers, they being the top layer that is a metal patterned layer, the third layer that is made of vanadium dioxide and located between the dielectric layers with different thickness, the dielectric layer that is made of polytetrafluoroethylene (PTFE), and the bottom layer that serves as a metal reflective layer. The metasurface units are rotated based on the Pancharatnam-Berry phase principle to obtain four metasurface units with fixed phase differences in between, after which the metasurface units are arranged in two dimensions based on the generalized Snell reflection law to obtain the desired phase-gradient deflected reflection beam. The insulating state-metallic state transition of the vanadium dioxide layer on the metasurface can change the phase gradient of the preset metasurface, thereby realizing the on/off function of deflection. The simulation results show that when the vanadium dioxide is in the insulating state, the phase gradient of the designed metasurface appears, and the metasurface can deflect the vertically incident circularly polarized wave with specific angle anomalies in a operating band of 1.1–2.0 THz; when the vanadium dioxide is in the metallic state, for the same operating band of the same metasurface, the phase gradient of the metasurface disappears, and the metasurface mirror reflects the vertically incident circularly polarized waves, thereby realizing the function switching. This design provides new possibilities for modulating the terahertz reflected beam, which will have potential applications in terahertz wireless communication and radar systems.
-
Keywords:
- terahertz /
- encoding metasurfaces /
- beam control
[1] Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar
[2] Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar
[3] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar
[4] Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar
[5] Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar
[6] Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar
[7] Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar
[8] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[9] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar
[10] Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar
[11] Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar
[12] Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar
[13] Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar
[14] Fedotov V 2021 Nat. Photonics 15 715Google Scholar
[15] Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar
[16] Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar
[17] Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar
[18] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 物理学报 72 098101Google Scholar
Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar
[19] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[20] Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar
[21] Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar
[22] Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar
[23] Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar
[24] Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar
[25] Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar
[26] Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar
[27] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar
[28] Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar
[29] Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2
[30] 杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar
Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar
[31] Li J S, Yao J Q 2018 IEEE Photonics J. 10 1
[32] Born M, Wolf E 2013 Phys. Today 53 77
[33] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[34] Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar
[35] Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar
-
图 5 不同入射角度下, 线极化波激励下超表面单元的反射相位和幅度 (a), (b) VO2处于绝缘态时, 不同入射角度下的幅度变化和相位变化; (c), (d) VO2处于金属态时, 不同入射角度下的幅度变化和相位变化
Fig. 5. Reflection phase and amplitude of metasurface elements under linearly polarized wave excitation at different incident angles: (a), (b) Amplitude variation and phase change of VO2 at different incident angles when it is in an insulating state; (c), (d) amplitude variation and phase change of VO2 at different incident angles when it is in a metallic state.
图 6 2-bit反射编码超表面, LCP波垂直入射 (a)超表面排布示意图; (b)超表面结构; (c) 1.1 THz处的三维远场散射图; (d) 1.1 THz处的归一化反射振幅图; (e) 2.0 THz处的三维远场散射图; (f) 2.0 THz处的归一化反射振幅图
Fig. 6. 2-bit reflection encoding metasurface, LCP wave vertically incident: (a) Schematic diagram of metasurface layout; (b) metasurface structure; (c) 3D far-field scattering map at 1.1 THz; (d) normalized reflection amplitude map at 1.1 THz; (e) 3D far-field scattering map at 2.0 THz; (f) normalized reflection amplitude map at 2.0 THz.
表 1 超表面单元的主要参数
Table 1. Main parameters of metasurface units.
Parameter D R1 R2 L1 L2 K1 K2 T1 T2 T3 H1 H2 Value/μm 110 10 19 60 51 8 8 0.2 0.3 0.2 3 26 表 2 超表面单元
Table 2. Metasurface units.
α 45° 0° 135° 90° 俯视图 2-bit 00 01 10 11 -
[1] Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59 101957Google Scholar
[2] Zeng J W, Luk T S, Gao J, Yang X D 2017 J. Opt. 19 125103Google Scholar
[3] Liu S, Cui T J, Xu Q, Bao D, Du L L, Wan X, Tang W X, Ouyang C M, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J G, Zhang W L, Cheng Q 2016 Light-Sci. Appl. 5 e16076Google Scholar
[4] Zeng Y J, Feng C H, Li Q, Su X, Yu H B 2019 IEEE Photonics J. 11 4601212Google Scholar
[5] Wang B X, Qin X F, Duan G Y, Yang G F, Huang W Q, Huang Z M 2024 Adv. Funct. Mater. 34 2402068Google Scholar
[6] Zhou J, Zhao X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sens. 6 1884Google Scholar
[7] Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y 2018 J. Alloy. Compd. 764 314Google Scholar
[8] Wang H, Ling F, Zhang B 2020 Opt. Express 28 36316Google Scholar
[9] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218Google Scholar
[10] Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 58 21Google Scholar
[11] Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev. 18 2301197Google Scholar
[12] Bai S S, Yang H Y 2022 Chin. J. Integr. Med. 28 366Google Scholar
[13] Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 20 21896Google Scholar
[14] Fedotov V 2021 Nat. Photonics 15 715Google Scholar
[15] Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57 085104Google Scholar
[16] Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 14 1Google Scholar
[17] Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar
[18] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯 2023 物理学报 72 098101Google Scholar
Wang J L, Dong X C, Yin L, Yang Z X, Wan H D, Chen H M, Zhong K 2023 Acta Phys. Sin. 72 098101Google Scholar
[19] Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 11 2977Google Scholar
[20] Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53 025109Google Scholar
[21] Ding Z P, Su W, Ye L P, Zhou Y H, Li W L, Zou J F, Tang B, Yao H B 2024 Phys. Chem. Chem. Phys. 26 8460Google Scholar
[22] Jiang H, Wang J Y, Zhao S L, Ye L H, Zhang H, Zhao W R 2023 Opt. Commun. 536 129380Google Scholar
[23] Zhao S L, Jiang H, Wang J Y, Zhu W C, Zhao W R 2023 Photonics 10 893Google Scholar
[24] Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 8 1901182Google Scholar
[25] Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91 155Google Scholar
[26] Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82 053811Google Scholar
[27] Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar
[28] Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 325 1518Google Scholar
[29] Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) pp1–2
[30] 杨森, 王佳云, 张婷, 于新颖 2022 光学学报 42 233Google Scholar
Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42 233Google Scholar
[31] Li J S, Yao J Q 2018 IEEE Photonics J. 10 1
[32] Born M, Wolf E 2013 Phys. Today 53 77
[33] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[34] Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 21 4784Google Scholar
[35] Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44 169Google Scholar
计量
- 文章访问数: 1066
- PDF下载量: 52
- 被引次数: 0