搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合相位调控的波束转向可控反射型超表面

魏涛 张玉洁 葛宏义 蒋玉英 吴旭阳 孙振雨 季晓迪 补雨薇 贾柯柯

引用本文:
Citation:

复合相位调控的波束转向可控反射型超表面

魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯

Composite phase modulation beam steering controllable reflective metasurface

Wei Tao, Zhang Yujie, Ge Hongyi, Jiang Yuying, Wu Xuyang, Sun Zhenyu, Ji Xiaodi, Bu Yuwe, Jia Keke
PDF
导出引用
  • 本文基于Pancharatnam-Berry相位原理和相变材料二氧化钒的复合相位调控机制,设计了一种波束转向可控的反射型超表面。基于Pancharatnam-Berry相位原理对超表面单元顶层结构进行旋转编码,获得所需的相位梯度,而超表面二氧化钒层绝缘态-金属态的转换,可使预设超表面的相位梯度改变,进而改变反射波束的转向。仿真测试结果表明:当二氧化钒处于绝缘态时,在1.1~2.0 THz工作频段内,超表面可使垂直入射的圆极化波以特定的角度出射,其反射效率大于80%;当二氧化钒处于金属态时,对于同一超表面的相同工作频段,超表面将入射的太赫兹波镜面反射,反射效率接近100%。这一设计对未来太赫兹反射波束调控领域具有潜在的应用价值。
    Terahertz metasurface functional devices have attracted extensive attention from researchers as an effective method to control terahertz waves. In order to enhance the functionality and flexibility of the metasurface and adapt to diverse application scenarios and demands, this paper designs a beam-steering controllable reflective metasurface by combining the Pancharatnam-Berry phase principle and the phase change material vanadium dioxide. The metasurface unit consists of five layers, the top layer is a metal patterned layer, the third layer of vanadium dioxide is located between different thicknesses of the dielectric layer, the material of the dielectric layer is PTFE, and the bottom layer is a metal reflective layer. The metasurface unit are rotated based on the Pancharatnam-Berry phase principle to obtain four metasurface units with fixed phase differences, after which the metasurface units are arranged in two dimensions based on the generalized Snell reflection law to obtain the desired phase-gradient deflected reflection beam. The insulating state-metallic state transition of the vanadium dioxide layer on the metasurface can change the phase gradient of the preset metasurface, thus realizing the on-off of the deflection function. The simulation results show that: when the vanadium dioxide is in the insulating state, the phase gradient of the designed metasurface, the metasurface can deflect the vertically incident circularly polarized wave with specific angle anomalies within the operating band of 1.1~2.0 THz; when the vanadium dioxide is in the metallic state, for the same operating band of the same metasurface, the phase gradient of the metasurface disappears, and the metasurface mirror reflection vertically incident circularly polarized waves, realizing of function switching. This design provides new possibilities in the field of terahertz reflected beam modulation, which will have potential applications in terahertz wireless communication and radar systems.
  • [1]

    Zhang Q, Cherkasov A V, Arora N, Hu G, Rudykh S 2023 Extreme Mech. Lett. 59101957

    [2]

    Zeng J, Luk T S, Gao J, Yang X 2017 J. Opt. 19125103

    [3]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light-Sci. Appl. 5 e16076

    [4]

    Zeng Y, Feng C, Li Q, Su X, Yu H 2019 IEEE Photonics J. 114601212

    [5]

    Wang B X, Qin X, Duan G, Yang G, Huang W Q, Huang Z 2024 Adv. Funct. Mater.

    [6]

    Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W 2021 ACS Sens. 61884

    [7]

    Shi M, Xu C, Yang Z, Liang J, Wang L, Tan S, Xu G 2018 J. Alloy. Compd. 764314

    [8]

    Wang H, Ling F, Zhang B 2020 Opt. Express 2836316

    [9]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light-Sci. Appl 3 e218

    [10]

    Zhang Y G, Yin K H, Liang L J, Yao H Y, Yan X, Hu X F, Huang C C, Qiu F, Zhang R, Li Y P, Wang Y R, Li Z H, Wang Z Q 2024 Curr. Appl. Phys. 5821

    [11]

    Orlov S, Ivaskeviciute-Povilauskiene R, Mundrys K, Kizevicius P, Nacius E, Jokubauskis D, Ikamas K, Lisauskas A, Minkevicius L, Valusis G 2024 Laser Photon. Rev.

    [12]

    Bai S-s, Yang H-y 2022 Chin. J. Integr. Med. 28366

    [13]

    Imai R, Kanda N, Higuchi T, Zheng Z, Konishi K, Kuwata-Gonokami M 2012 Opt. Express 2021896

    [14]

    Fedotov V 2021 Nat. Photonics 15715

    [15]

    Liang H, Zeng H, Zhao H, Wang L, Liang S, Feng Z, Yang Z, Zhang Y 2024 J. Phys. D-Appl. Phys. 57085104

    [16]

    Zhao F, Xu J, Song Z 2022 IEEE Photonics J. 141

    [17]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 112202275

    [18]

    Wang J L, Dong X C, YIin L, Yang Z X, Wang H D,Chen H M, Zhong K, 2023 Acta Phys. Sin. 72299(汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯2023物理学报72299)

    [19]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Xiao Q, Cui T J 2022 Nanophotonics 112977

    [20]

    Fan J, Cheng Y 2019 J. Phys. D-Appl. Phys. 53025109

    [21]

    Ding Z, Su W, Ye L, Zhou Y, Li W, Zou J, Tang B, Yao H 2024 Phys. Chem. Chem. Phys. 268460

    [22]

    Jiang H, Wang J, Zhao S, Ye L H, Zhang H, Zhao W 2023 Opt. Commun. 536129380

    [23]

    Zhao S, Jiang H, Wang J, Zhu W, Zhao W 2023 Photonics 10893

    [24]

    Sharma M, Hendler N, Ellenbogen T 2020 Adv. Opt. Mater. 81901182

    [25]

    Sorathiya V, Patel S K, Katrodiya D 2019 Opt. Mater. 91155

    [26]

    Menzel C, Rockstuhl C, Lederer F 2010 Phys. Rev. A 82053811

    [27]

    Zhao Y, Huang Q, Cai H, Lin X, Lu Y 2018 Opt. Commun. 426443

    [28]

    Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst N M, Palit S, Smith D R, Di Ventra M, Basov D N 2009 Science 3251518

    [29]

    Zheng Q, Zhang J, Li Y, Zheng L, Sui S, Qu S 2017 International Applied Computational Electromagnetics Society Symposium (ACES) p1-2

    [30]

    Yang S, Wang J Y, Zhang T, Yu X Y 2022 Acta Opt. Sin. 42233(杨森, 王佳云, 张婷, 于新颖2022光学学报42233)

    [31]

    Li J s, Yao J q 2018 IEEE Photonics J. 101

    [32]

    Born M, Wolf E 2013 Phys. Today 5377

    [33]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334333

    [34]

    Ai H, Kang Q, Wang W, Guo K, Guo Z 2021 Sensors 214784

    [35]

    Monnai Y, Lu X, Sengupta K 2023 J. Infrared Millim. Terahertz Waves 44169

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, doi: 10.7498/aps.73.20240225
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, doi: 10.7498/aps.72.20230989
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, doi: 10.7498/aps.72.20221962
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, doi: 10.7498/aps.72.20222171
    [5] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, doi: 10.7498/aps.72.20222321
    [6] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究. 物理学报, doi: 10.7498/aps.71.20221284
    [7] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, doi: 10.7498/aps.70.20201495
    [9] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军. 编码超构表面实现双波束独立可重构. 物理学报, doi: 10.7498/aps.70.20210344
    [10] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, doi: 10.7498/aps.70.20210897
    [11] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, doi: 10.7498/aps.69.20200757
    [12] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, doi: 10.7498/aps.69.20200891
    [13] 李绍和, 李九生, 孙建忠. 太赫兹频率编码器. 物理学报, doi: 10.7498/aps.68.20190032
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [15] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, doi: 10.7498/aps.67.20180125
    [16] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [17] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, doi: 10.7498/aps.65.080702
    [18] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, doi: 10.7498/aps.64.090502
    [19] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, doi: 10.7498/aps.64.158101
    [20] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, doi: 10.7498/aps.60.014220
计量
  • 文章访问数:  110
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-10

/

返回文章
返回