搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控

林基艳 陈诚 郭林伟 李耀 林书玉 孙姣夏 徐洁

引用本文:
Citation:

声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控

林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁

Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures

Lin Ji-Yan, Chen Cheng, Guo Lin-Wei, Li Yao, Lin Shu-Yu, Sun Jiao-Xia, Xu Jie
PDF
HTML
导出引用
  • 如何对复杂功率超声换能器耦合振动系统的声波进行调控, 设计高性能的换能器系统, 一直都是功率超声领域亟待解决的难题. 研究发现, 在换能器系统内部引入各种缺陷, 可以在一定程度上改善换能器耦合振动系统的性能. 但损耗大、频带窄、对结构参数敏感等缺点限制了缺陷型声子晶体换能器耦合振动系统的进一步实际应用. 为了改善缺陷型声子晶体换能器耦合振动系统的局限, 有效降低能量损耗, 提高能量传输的效率, 本文在换能器耦合振动系统内引入既具有能量局域化效应的拓扑缺陷结构, 又具有高能量传输效率的声表面结构. 通过灵活设计声表面结构和拓扑缺陷的几何尺寸参数, 可以对换能器耦合振动系统的振动进行有效调控, 从而满足换能器耦合振动系统功能方面的不同需求. 但表面结构和拓扑缺陷结构的设计参数过多, 会成倍地增加设计的复杂度, 大幅降低设计成功率, 为此, 利用数据分析技术建立了系统性能预测模型, 不仅可以提高设计效率和成功率, 还能够为换能器耦合振动系统性能的调控提出客观和准确的依据.
    How to regulate the sound waves in the coupled vibration system of complex power ultrasonic transducers and design high-performance transducer systems has always been an urgent problem in the field of power ultrasound. Research has found that introducing various defects within the transducer system can improve the performance of the transducer coupled vibration system to a certain extent. However, the drawbacks of high loss, narrow frequency band, and sensitivity to structural parameters limit the further practical application of defect type phononic crystal transducer coupled vibration systems.In order to improve the limitations of the coupled vibration system of defect-type phononic crystal transducers, effectively reduce energy loss, and enhance the efficiency of energy transmission, this paper introduces a topological defect structure with energy localization effect and a sound surface structure with high energy transmission efficiency into the coupled vibration system of the transducer. In this study, the acoustic surface structure and topological defect structure are used to excite defect states with energy localization effects and high energy transmission efficiency surface states, effectively regulating the vibration of the transducer coupled vibration system, and constructing a transducer coupled vibration system with high quality factor, low loss, and high energy transmission efficiency. By flexibly designing the geometric size parameters of the acoustic surface structure and defects, the vibration of the transducer coupled vibration system can be effectively controlled, thereby meeting the different functional requirements of the transducer coupled vibration system.However, due to the excessive design parameters of surface structure and topological defect structure, the complexity of the design will be multiplied, greatly reducing the success rate of the design. Therefore, this study uses data analysis technology to establish a performance prediction model for the transducer coupled vibration system, in order to achieve the accurate prediction of system performance and change the shortcomings of low design efficiency and low success rate brought by traditional empirical trial and error methods.In order to verify the effectiveness of the research, the coupled vibration system of the transducer is studied in simulation and experiment in this work. The simulation and experimental results indicate that the acoustic surface structure and topological defect structure can effectively regulate sound waves to improve the performance of the transducer coupled vibration system.
  • 图 1  大尺寸三维换能器耦合振动系统

    Fig. 1.  Large scale three-dimensional transducer coupled vibration system.

    图 2  大尺寸三维换能器耦合振动系统振动特性 (a) 振型图; (b) 工具头辐射面位移分布图

    Fig. 2.  Vibration characteristics of a coupled vibration system with large-scale three-dimensional transducers: (a) Vibration mode diagram; (b) displacement distribution map of tool head radiation surface.

    图 3  声表面和拓扑缺陷结构的工具头结构示意图

    Fig. 3.  Schematic diagram of the structure of the tool head for acoustic surface and topological defect structures.

    图 4  工具头侧表面示意图 (a) X方向; (b) Y方向

    Fig. 4.  Schematic diagram of the side surface of the tool head: (a) X direction; (b) Y direction.

    图 5  工具头上表面示意图

    Fig. 5.  Schematic diagram of the upper surface of the tool head.

    图 6  基于声表面和拓扑缺陷结构的系统模型图

    Fig. 6.  System model diagram based on acoustic surface and topological defect structure.

    图 7  基于声表面和拓扑缺陷结构的换能器耦合振动系统的振动特性 (a) 振型图; (b) 优化系统和未优化系统工具头辐射面位移分布对比图

    Fig. 7.  Vibration characteristics of transducer coupled vibration system based on acoustic surface and topological defect structure: (a) Vibration mode diagram; (b) comparison diagram of displacement distribution on the radiation surface of optimized and unoptimized system tool heads.

    图 8  无表面结构的系统模型图

    Fig. 8.  System model diagram without surface structure.

    图 9  无表面结构的系统的振型图

    Fig. 9.  Vibration characteristics of a system without surface structure.

    图 10  有、无表面结构的系统性能对比图

    Fig. 10.  Comparison chart of system performance with and without surface structure.

    图 11  三种系统的工具头辐射面位移分布图

    Fig. 11.  Displacement distribution diagram of tool head radiation surface for three systems.

    图 12  各参数对f的影响

    Fig. 12.  The impact of various parameters on f.

    图 14  各参数对Un的影响

    Fig. 14.  The impact of various parameters on Un.

    图 15  纵向谐振频率f的仿真值和预测值的对比及相对误差

    Fig. 15.  Comparison and relative error between simulated and predicted values of longitudinal resonant frequency f.

    图 17  Un的仿真值和预测值的对比及相对误差

    Fig. 17.  Comparison and relative error between simulated and predicted values of Un.

    图 13  各参数对Sn的影响

    Fig. 13.  The impact of various parameters on Sn.

    图 16  Sn的仿真值和预测值的对比及相对误差

    Fig. 16.  Comparison and relative error between simulated and predicted values of Sn.

    图 18  加工的实物图

    Fig. 18.  Photos of the processed systems.

    图 19  未优化系统的输入电阻抗与谐振频率的测量 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Fig. 19.  Measurement of input impedance and resonant frequency of unoptimized systems: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 20  优化后系统的输入电阻抗与谐振频率的测量 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Fig. 20.  Measurement of input impedance and resonant frequency of the optimized system: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 21  振幅分布的测量 (a) 测量过程; (b) 未优化系统的测量结果; (c) 优化后系统的测量结果

    Fig. 21.  Measurement of amplitude distribution: (a) Measurement process; (b) measurement results of non-optimized systems; (c) measurement results of the optimized system.

    图 22  激光振动测量设备结果对比图

    Fig. 22.  Comparison chart of laser vibration measurement equipment results.

    表 1  系统辐射面振幅分布均匀度和纵向相对位移振幅对比表

    Table 1.  Material and structural parameter table of the system.

    系统辐射面振幅分布均匀度Un/%辐射面纵向相对位移振幅平均值Sn
    未经过优化的耦合振动系统0.04270.00467
    无表面结构的系统93.7470.0278
    基于声表面和拓扑缺陷结构的换能器耦合振动系统93.3410.0333
    比值(基于声表面和拓扑缺陷结构的系统/未优化系统)2185.9727.131
    下载: 导出CSV

    表 2  纵向谐振频率f的预测模型

    Table 2.  Predictive model for longitudinal resonant frequency f of slot structures.

    频率f/ HzABCD
    穿透性长方体槽高度h1/mm24827.063–143.7891.1190.000
    异质长方体槽高度h2/mm21488.704–39.6160.2940.000
    穿透性长方体槽宽度w/mm22041.812–190.343–20.7970.262
    凹槽厚度h4/mm20202.9943.392–0.0207–0.0947
    凹槽宽度w1/mm20200.3996.0766–0.3420.00934
    圆柱体孔的半径r1/mm20292.3847.339–11.913–0.0145
    圆柱体孔的高度h3/mm20612.845–7.2180.0000.000325
    多点变形缺陷空气圆柱体半径r2/mm20207.2873.703–4.6010.0723
    下载: 导出CSV

    表 3  纵向相对位移振幅平均值Sn的预测模型

    Table 3.  Predictive model for the uniformity of longitudinal average displacement amplitude Sn of slot structures.

    纵向相对位移振幅平均值SnABCD
    穿透性长方体槽高度h1/mm0.01340.0000.00000640–7.561×10–8
    异质长方体槽高度h2/mm0.008730.000282–0.000001960.000
    穿透性长方体槽宽度w/mm0.00879–0.0008800.000718–0.0000479
    凹槽厚度h4/mm0.01940.000745–0.0003630.0000342
    凹槽宽度w1/mm0.0211–0.001380.000293–0.0000178
    圆柱体孔的半径r1/mm0.0183–0.001330.000742–0.0000644
    圆柱体孔的高度h3/mm0.01170.0001150.000–3.842×10–9
    多点变形缺陷空气圆柱体半径r2/mm0.020–0.0008630.000274–0.0000255
    下载: 导出CSV

    表 4  纵向相对位移振幅分布均匀度Un的预测模型

    Table 4.  Predictive model for the uniformity of displacement amplitude distribution Un of slot structures.

    纵向相对位移振幅分布均匀度Un/%ABCD
    穿透性长方体槽高度h1/mm–0.2650.0000.000791–0.00000772
    异质长方体槽高度h2/mm0.3230.0156–0.0001040.000
    穿透性长方体槽宽度w/mm0.4430.06940.0141–0.00215
    凹槽厚度h4/mm0.7800.185–0.04680.00275
    凹槽宽度w1/mm0.932–0.01550.00383–0.000235
    圆柱体孔的半径r1/mm0.937–0.01060.00557–0.000913
    圆柱体孔的高度h3/mm0.7720.0000.0000868–7.534×10–7
    多点变形缺陷空气圆柱体半径r2/mm1.021–0.1500.047–0.00432
    下载: 导出CSV
  • [1]

    温激鸿 2005 博士学位论文 (长沙: 国防科学技术大学)

    Wen J H 2005 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology

    [2]

    李鸿秋 2011 博士学位论文 (南京: 南京航空航天大学)

    Li H Q 2011 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics

    [3]

    宋玉宝 2015 博士学位论文 (长沙: 国防科学技术大学)

    Song Y B 2015 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology

    [4]

    肖勇 2012 博士学位论文 (长沙: 国防科学技术大学)

    Xiao Y 2012 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology

    [5]

    王刚 2005 博士学位论文 (长沙: 国防科学技术大学)

    Wang G 2005 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology

    [6]

    Liu D X, Yue Q W, Deng J, Lin D, Li X B, Di W N, Wang X A, Zhao X Y, Luo H S 2015 Sensors 15 6807

    [7]

    Jadidian B, Hagh N M, Winder A A, Safari A 2009 IEEE Trans. Ultra. Ferr. Freq. Cont. 56 368Google Scholar

    [8]

    Chen Y, Sayer M, Zou L, Jen C K 1998 MRS Proc. 541 647Google Scholar

    [9]

    Hou S, Yang X Y, Fei C L, Sun X H, Zhou Q F 2018 J. Elec. Mater. 47 6842

    [10]

    Kim K B, Hsu D K, Ahn B, Kim Y G, Barnard D J 2010 Ultrasonics 50 790Google Scholar

    [11]

    Zhou D, Kwok F C, Chen Y, Sien T L, Zhou Q F, Shung K K, Hao S L, Dai J Y, Chan H L W 2011 IEEE Trans. Ultra. Ferr. Freq. Cont. 58 477Google Scholar

    [12]

    Chen C, Wang S, Tian H, Lin S Y 2021 Ultrasonics 117 106546

    [13]

    赵甜甜, 林书玉, 段祎林 2018 物理学报 67 224207Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 224207Google Scholar

    [14]

    王莎, 林书玉, 段祎林 2018 应用声学 37 811

    Wang S, Lin S Y, Duan Y L 2018 Appl. Acous. 37 811

    [15]

    陈诚, 林书玉 2021 物理学报 70 017701Google Scholar

    Chen C, Lin S Y 2021 Acta Phys. Sin. 70 017701Google Scholar

    [16]

    胡理情, 林书玉 2021 应用声学 40 323Google Scholar

    Hu L Q, Lin S Y 2021 Appl. Acous. 40 323Google Scholar

    [17]

    戚安琪 2023 硕士学位论文 (杭州: 杭州电子科技大学)

    Qi A Q 2023 M. S. Thesis (Hangzhou: Hangzhou University of Electronic Science and Technology

    [18]

    林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 100

    Lin J Y, Lin S Y, Wang S, Li Y 2021 Sci. Sin. Phys. Mech. As. 51 100

    [19]

    林基艳, 林书玉, 徐洁, 王升, 钟兴华 2023 中国科学: 物理学 力学 天文学 53 64

    Lin J Y, Lin S Y, Xu J, Wang S, Zhong X H 2023 Sci. Sin. Phys. Mech. As. 53 64

    [20]

    林基艳, 林书玉 2023 物理学报 72 094301Google Scholar

    Lin J Y, Lin S Y 2023 Acta Phys. Sin. 72 094301Google Scholar

    [21]

    冯俊瑾 2023 博士学位论文 (成都: 电子科技大学)

    Feng J J 2023 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [22]

    Christensen J, Fernandez-Dominguez A I, De Leon-Perez F, Martin-Moreno L, Garcia-Vidal F J 2007 Nat. Phys. 3 851Google Scholar

    [23]

    Zhou Y, Lu M H, Feng L, Ni X, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2010 Phys. Rev. Lett. 104 164301Google Scholar

    [24]

    Estrada H, Candelas P, Uris A, Belmar F, Abajo F J G D, Meseguer F 2008 Phys. Rev. Lett. 101 118

    [25]

    Liu F M, Cai F Q, Ding Y T, Liu Z Q 2008 Appl. Phys. Lett. 92 103504Google Scholar

    [26]

    He Z J, Jia H, Qiu C Y, Peng S S, Mei X F, Cai F Y, Peng P, Ke M Z, Liu Z Y 2010 Phys. Rev. Lett. 105 74301Google Scholar

    [27]

    叶扬韬 2015 博士学位论文 (武汉: 武汉大学)

    Ye Y T 2015 Ph. D. Dissertation (Wuhan: Wuhan University

    [28]

    熊帅 2019 博士学位论文 (成都: 电子科技大学)

    Xiong S 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [29]

    舒风风 2016 博士学位论文 (长春: 中国科学院长春光学精密机械与物理研究所)

    Shu F F 2016 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences

    [30]

    李金强 2008 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li J Q 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [31]

    赵言诚 2006 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhao Y C 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [32]

    赵芳 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Zhao F 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [33]

    夏明 2021 博士学位论文 (广州: 广东工业大学)

    Xia M 2021 Ph. D. Dissertation (Guangzhou: Guangdong University of Technology

    [34]

    赵胜东 2018 博士学位论文 (北京: 北京交通大学)

    Zhao S D 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University

    [35]

    韩士楷 2018 博士学位论文 (大连: 大连理工大学)

    Han S K 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [36]

    谢素君 2017 博士学位论文 (吉首: 吉首大学)

    Xie S J 2017 Ph. D. Dissertation (Jishou: Jishou University

    [37]

    Zhao Y C, Wu Y B, Yuan L B 2009 Phys. Scripa 80 065401Google Scholar

    [38]

    Benchabane S, Gaiffe O, Salut R, Ulliac G, Laude V, Kokkonen K 2015 Appl. Phys. Lett. 106 081903Google Scholar

  • [1] 李睿英, 罗婷婷, 李貌, 陈硕, 鄢永高, 吴劲松, 苏贤礼, 张清杰, 唐新峰. n型Bi2–x SbxTe3–ySey基化合物的缺陷结构调控与电热输运性能. 物理学报, doi: 10.7498/aps.73.20240098
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, doi: 10.7498/aps.72.20230514
    [3] 史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田. 幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计. 物理学报, doi: 10.7498/aps.72.20230775
    [4] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, doi: 10.7498/aps.72.20230195
    [5] 胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平. 声学蜂窝结构中的拓扑角态. 物理学报, doi: 10.7498/aps.71.20211848
    [6] 高东宝, 朱纪霖, 张赛, 周鹤峰, 曾新吾. 基于Rayleigh-Bloch模式的单层结构弯曲声波导. 物理学报, doi: 10.7498/aps.70.20201270
    [7] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, doi: 10.7498/aps.70.20201237
    [8] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, doi: 10.7498/aps.69.20200311
    [9] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, doi: 10.7498/aps.69.20191454
    [10] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, doi: 10.7498/aps.68.20181664
    [11] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, doi: 10.7498/aps.68.20190728
    [12] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, doi: 10.7498/aps.68.20191363
    [13] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, doi: 10.7498/aps.67.20181150
    [14] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, doi: 10.7498/aps.65.038101
    [15] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器. 物理学报, doi: 10.7498/aps.65.130701
    [16] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, doi: 10.7498/aps.64.034204
    [17] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, doi: 10.7498/aps.62.104601
    [18] 聂六英, 李春先, 周晓萍, 程芳, 王成志. 结构缺陷对量子波导腔中热导的调控. 物理学报, doi: 10.7498/aps.60.116301
    [19] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, doi: 10.7498/aps.51.1434
    [20] 史俊杰, 潘少华. 四层异质结构的表面和界面光学声子模. 物理学报, doi: 10.7498/aps.43.790
计量
  • 文章访问数:  517
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-28
  • 修回日期:  2024-10-11
  • 上网日期:  2024-10-16

/

返回文章
返回