搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柱状和声学表面结构的压电超声换能器

林基艳 李耀 陈诚 林书玉 郭林伟 徐洁

引用本文:
Citation:

柱状和声学表面结构的压电超声换能器

林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁

Piezoelectric Ultrasonic Transducers with Columnar and Acoustic Surface Structures

LIN Jiyan, LI Yao, CHEN Cheng, LIN Shuyu, GUO Linwei, XU Jie
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 圆孔型声子晶体,因结构简单,制作方便,被广泛应用于换能器的性能优化研究。研究发现,圆孔型声子晶体结构的孔隙越大,弹性波的能量局域化效果越好。但是高孔隙度意味着圆孔间的距离较窄,会大幅降低结构的机械强度。柱状声子晶体结构的提出,解决了圆孔型声子晶体结构需要高孔隙度,对结构尺寸精度要求高的问题,为压电超声换能器的性能优化提供了新思路。
    研究利用在换能器的前、后盖板上加工的柱状和声学表面结构,操控声波的传输行为和路径,从而实现对换能器中耦合振动的有效控制,不仅解决了换能器因振动能量不能均匀传递而导致的辐射面振幅分布不均匀的问题,还使其辐射面的位移振幅得到了显著提升,提高了换能器的工作效率。仿真计算结果揭示了柱状和声学表面结构的配置对换能器性能的影响规律,实验结果证明柱状和声学表面结构可以有效提升压电超声换能器的性能,研究可以为换能器的工程计算及优化提供系统的设计理论证明。
    The band gap, localization, and waveguide characteristics of phononic crystal structures offer extensive potential for applications in the transducer field, particularly for circular-hole phononic crystals, which are extensively utilized in performance optimization research for transducers owing to their straightforward structure and ease of fabrication. Nonetheless, studies have revealed that the bandgap width of circular-hole phononic crystal structures is directly proportional to their porosity. Typically, a higher porosity leads to enhanced energy localization of elastic waves. However, high porosity implies a narrower distance between circular holes, drastically compromising the mechanical strength of the structure. The introduction of columnar phononic crystal structures addresses the issues of high porosity and stringent dimensional accuracy demands of circular-hole phononic crystal structures, presenting novel avenues for enhancing the performance of piezoelectric ultrasonic transducers.
    The paper employs cylindrical and acoustic surface structures fabricated on the front and rear cover plates of piezoelectric ultrasonic transducers to manipulate the transmission behavior and pathway of sound waves, thereby achieving effective control over coupled vibrations within the transducer. This approach not only addresses the issue of uneven amplitude distribution on the radiation surface due to uneven vibration energy transmission but also markedly enhances the displacement amplitude of the transducer's radiation surface, ultimately boosting its operational efficiency. Simulation results elucidate the impact of the configuration of these cylindrical and acoustic surface structures on transducer performance. Experimental findings further validate that these structures can effectively elevate the performance of piezoelectric ultrasonic transducers. This research offers systematic design theoretical support for the engineering calculation and optimization of transducers.
  • [1]

    Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533-1. DOI: 10.1016/J.ULTRAS.2024.107533

    [2]

    Takeda K., Tanaka H., Tsuchiya T., Kaneko S. 1998 Ultrasonics 36 75. https://doi.org/10.1016/S0041-624X(97)00077-2.

    [3]

    Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812. DOI 10.1143/JJAP.45.4812.

    [4]

    Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872. DOI: 10.1016/j.cirpj.2021.10.002.

    [5]

    Peters D 1996 J. Mater. Chem. 6 1605. DOI:10.1039/jm9960601605.

    [6]

    An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. & Manu. 26 559. DOI: 10.1007/s12541-024-01123-3.

    [7]

    Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensors and Actuators A: Physical 381 116037-1. https://doi.org/10.1016/j.sna.2024.116037.

    [8]

    Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812. https://doi.org/10.3390/ma16175812.

    [9]

    Ronda S, Francisco M de E. 2018 Advances in Applied Ceramics 117 177. DOI: 10.1080/17436753.2017.1391974

    [10]

    Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [ 李照希 2022 博士学位论文 (西安: 西安电子科技大学)].

    [11]

    Qin Z J 2023 M.S. Thesis (Taiyuan: North University of China) (in Chinese) [秦振杰 2023 硕士学位论文 (太原: 中北大学)]

    [12]

    Zhang L J 2022 M.S. Thesis (Zhenjiang: Jiangsu University) (in Chinese) [张利娟 2022 硕士学位论文 (镇江: 江苏大学)]

    [13]

    Song M X 2020 M.S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)]

    [14]

    Wang Y P 2023 M.S. Thesis (Guangzhou: Guangdong University of Technology) (in Chinese) [王燕萍 2023 硕士学位论文 (广州: 广东工业大学)]

    [15]

    Lin J Y, Lin S Y, Wang S, Li Y 2021 SCIENTIA SINICA Physica, Mechanica & Astronomica. 51 96(in Chinese)[林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 96] https://doi.org/10.1360/SSPMA-2021-0004.

    [16]

    Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [ 李婧 2021 博士学位论文 (太原: 中北大学)].

    [17]

    Wang S,Chen C, Hu Liqing, Lin S Y 2022 J. ACOUST. SOC. AM. 152 193. DOI: 10.1121/10.0011790.

    [18]

    Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640-1. https://doi.org/10.1016/j.ultras.2021.106640.

    [19]

    Sun X Y, Yan Q, Guo X Y 2021 J. SYNT. CRYS. 50 1378(in Chinese)[孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378] DOI:10.16553/j.cnki.issn1000-985x.20210623.002.

    [20]

    Chen X R 2021 M.S. Thesis (Lanzhou: Lanzhou University) (in Chinese) [程晓茹 2021 硕士学位论文 (兰州: 兰州大学)]

    [21]

    Yu L L 2023 M.S. Thesis (Taiyuan: North University of China) (in Chinese) [尉浪浪 2023 硕士学位论文 (太原: 中北大学)]

    [22]

    Tan Z H 2021 M.S. Thesis (Lanzhou: Lanzhou Jiaotong University) (in Chinese) [谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)]

    [23]

    Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois.& Vibr. Cont. 44 96(in Chinese)[张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96] DOI: 10.3969/j.issn.1006-1355.2024.04.015

    [24]

    Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. &Cont. 45 674. DOI: 10.1177/01423312221119586.

    [25]

    Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. & Actu.:A. Physical 333 113298-1 . DOI:10.1016/j.sna.2021.113298.

    [26]

    Dryburgh P,Smith J R,Marrow P, Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171-1. DOI: 10.1016/j.ultras.2020.106171.

    [27]

    Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131. DOI: 10.1016/j.ultras.2018.03.017.

计量
  • 文章访问数:  58
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-05

/

返回文章
返回