搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共聚焦超声换能器的声场优化与粒子捕获

狄苗 何湘 刘明智 闫善善 魏龙龙 田野 尹冠军 郭建中

引用本文:
Citation:

共聚焦超声换能器的声场优化与粒子捕获

狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中

Sound field optimization and particle trapping of confocal ultrasonic transducer

Di Miao, He Xiang, Liu Ming-Zhi, Yan Shan-Shan, Wei Long-Long, Tian Ye, Yin Guan-Jun, Guo Jian-Zhong
PDF
HTML
导出引用
  • 超声悬浮被广泛应用于多个领域, 目前主要有驻波式和相控阵式悬浮系统. 基于共焦点排列的聚焦换能器结构, 本研究提出了一种单边式超声悬浮系统. 其基本原理是利用反相激励成对聚焦换能器在空间构建具有势阱结构的特定声场, 实现微粒的捕获与悬浮. 针对4个共焦点排列的聚焦换能器, 基于有限元仿真研究了换能器轴夹角及激励相位模式对声场分布的影响; 利用实验演示了系统的粒子捕获效果, 验证了其势阱分布情况. 结果表明, 换能器轴线与结构中轴线夹角为45°时, 势阱强度最高; 换能器的激励相位分别为0, 0, π, π时, 声场中存在1处主势阱、2处次级势阱, 可以捕获3处粒子团; 换能器的激励相位分别为0, π/2, π, 3π/2时, 声场中仅存在1处势阱, 只可捕获1处粒子团. 该系统具有成本低、自由度高、稳定性强、操作便捷的优点, 且能够实现单个位置或多个位置粒子团的捕获与悬浮, 可以用于流体中高密度物体操控.
    The nonlinear effect of high-intensity sound waves produces the acoustic radiation force (ARF), which are used for acoustic levitation and manipulation practical. With no special requirement for the physical and chemical properties of the controlled objects, acoustic levitation owns a promising application prospect. The common levitation scheme includes the standing-wave system and phased-array levitation system. The standing-wave system has poor performance in the aspects of the degree of spatial freedom, the ARF along the non-axial direction, and the levitation stability. The phased-array system requires a complex control system and a high production cost. Here, we propose a single-side acoustic levitation system based on the paired confocal focused transducers. By driving the transducer pairs with reverse phase mode, two anti-phase focused spherical waves interfere with each other, resulting in constant sound pressure of 0 Pa at the focus. The resulting potential well can achieve stable particle capturing and levitating. First, we verifed the theoretical feasibility of the system according to Huygens' principle. Then, using the finite element method, we analyzed the influences of structural and driving parameters on the sound field distribution, such as the angle between the transducer axis and the central axis of the structure and the excitation phase modes. Finally, we demonstrated the particle trappings under two kinds of excitation phase modes of the levitation system experimentally. The results show that, 1) the intensity of the dominating potential well reaches a strongest value when the structural angle is 45°; 2) as the excitation phases are 0, 0, π, and π, the sound field owns three potential wells which can capture three clusters of quartz sands, the primary potential well is stronger than the secondary one; 3) as the excitation phases are 0, π/2, π, and 3π/2, the sound field owns one potential well and captures one cluster of quartz sands. The isosurface of wave intensity around the potential well is more comprehensive than in the previous phase mode. The four-phase excitation improves the levitation stability better. The proposed levitation scheme can realize stable single- or multi-position capture of high-density objects in the fluid. Moreover, it has the advantages of low cost and a high degree of freedom.
      通信作者: 尹冠军, yinchamp@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004237, 11727813, 12034005, 11904221)、中国博士后创新人才支持计划(批准号: BX20190193)、中国博士后科学基金资助项目(批准号: 2020M683416, 2019M663612)和陕西省科学技术协会青年人才托举计划项目(批准号: 20220523)资助的课题.
      Corresponding author: Yin Guan-Jun, yinchamp@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004237, 11727813, 12034005, 11904221), the China National Postdoctoral Program for Innovative Talents (Grant No. BX20190193), the China Postdoctoral Science Foundation (Grant Nos. 2020M683416, 2019M663612) and the Young Talent Fund of Association for Science and Technology in Shaanxi, China (Grant No. 20220523).
    [1]

    Stindt A, Andrade M A B, Albrecht M, Adamowski J C, Panne U, Riedel J 2014 Rev. Sci. Instrum. 85 015

    [2]

    Brandt E H 1989 Science 243 349Google Scholar

    [3]

    Li J, Jamieson W D, Dimitriou P, Xu W, Rohde P, Martinac B, Baker M, Drinkwater B W, Castell O K, Barrow D A 2022 Nat. Commun. 13 4125Google Scholar

    [4]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [5]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [6]

    Morris R H, Dye E R, Axford D, Newton M I, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [7]

    冯乙婷, 姬晓亮, 张永建, Muhammad M M, 臧渡洋 2021 中国科学: 物理学 力学 天文学 5 147Google Scholar

    Feng Y T, Ji X L, Zhang Y J, Muhammad M M, Zang D Y 2021 Sci. Sin-Phys. Mech. Astron. 5 147Google Scholar

    [8]

    张泽辉, 刘康祺, 邸文丽, 陈阵, 臧渡洋 2020 中国科学: 物理学 力学 天文学 50 113Google Scholar

    Zhang Z H, Liu K Q, Di W L, Chen Z, Zang D Y 2020 Sci. Sin-Phys. Mech. Astron. 50 113Google Scholar

    [9]

    Kepa M W, Tomizaki T, Sato Y, Ozerov D, Sekiguchi H, Yasuda N, Aoyama K, Skopintsev P, Standfuss J, Cheng R, Hennig M, Tsujino S 2022 Sci. Rep. 12 5349Google Scholar

    [10]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 1

    [11]

    魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊 2020 物理学报 69 184702Google Scholar

    Wei Y J, Zhang J, Deng S C, Zhang Y J, Yang Y J, Liu S H, Chen H 2020 Acta Phys. Sin. 69 184702Google Scholar

    [12]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 PNAS 110 12549Google Scholar

    [13]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [14]

    洪振宇, 吕勇军, 解文军, 魏炳波 2006 科学通报 1 2714Google Scholar

    Hong Z Y, Lyu Y J, Xie W J and Wei B B 2006 Chin. Sci. Bull. 1 2714Google Scholar

    [15]

    阮永都, 梁旭 2020 中国科学: 技术科学 50 1226Google Scholar

    Ruan Y D, Liang X 2020 Sci. Sinica Tec. ) 50 1226Google Scholar

    [16]

    Marzo Pérez A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [17]

    Fushimi T, Yamamoto K, Ochiai Y 2021 Sci. Rep. 11 12678Google Scholar

    [18]

    范皓然, 尹冠军, 李盼, 郭建中 2018 声学学报 43 364

    Fan H R,Yin G J, Li P, Guo J Z 2018 Acta Acust. 43 364

    [19]

    Roslyakov S, Emelyanov F, Erzakova N, Sivkov E 2019 IOP Conference 516 012033Google Scholar

    [20]

    Wei L L, Yin G J, Han H, Guo J Z 2021 International Ultrasonics Symposium (IUS) Xi'an, China, November 16, 2021 pp1–4

    [21]

    朱哲民, 龚秀芬, 杜功焕 2012 声学基础(第三版) (南京: 南京大学出版社) 第211—220页

    Zhu Z M, Gong X F, Du G H 2012 Fundamentals of Acoustics (Vol. 3) (Nanjing: Nanjing University Press) pp211–220 (in Chinese)

  • 图 1  两个共焦点聚焦换能器结构

    Fig. 1.  Structure of two confocal ultrasound transducers.

    图 2  数值仿真的结构模型和相位模式 (a) 结构模型图; (b) 两相位激励模式; (c) 四相位激励模式

    Fig. 2.  Structure model and phase mode in the numerical simulations: (a) Structure model; (b) two-phase excitation model; (c) four-phase excitation model.

    图 3  主势阱声压级峰值随换能器夹角变化图

    Fig. 3.  The relationship between the peak value of sound pressure level in the primary potential well and the angle of the transducer.

    图 4  两相位模式的声强切面图 (白色实线圈为主势阱位置, 白色虚线圈为次级势阱位置) (a) x-y截面 (z = 0 mm); (b) y-z截面 (主势阱) (x = 0 mm); (c) y-z截面 (次级势阱) (x = 0.2 mm)

    Fig. 4.  Sound intensity of the two-phase model (The white solid coil is the main potential well position, and the white dashed coil is the secondary potential well position): (a) x-y section (z = 0 mm); (b) y-z section (the primary potential well) (x = 0 mm); (c) y-z section (the secondary potential well) (x = 0.2 mm).

    图 5  两相位模式的声强等值面 (白色实线圈为主势阱位置, 白色虚线圈为次级势阱位置) (a) Is = 1.31 kW/m2; (b) Is = 0.53 kW/m2; (c) Is = 0.53 kW/m2

    Fig. 5.  Equipotential surface of sound intensity of the two-phase model (The white solid coil is the main potential well, and the white dashed coil is the secondary potential well.): (a) Is = 1.31 kW/m2; (b) Is = 0.53 kW/m2; (c) Is = 0.53 kW/m2.

    图 6  四相位模式的声强切面图(白色实线圈为主势阱位置) (a)x-y截面 (z = 0 mm); (b)y-z截面 (x = 0 mm); (c)x-z截面 (y = 0 mm)

    Fig. 6.  Sound intensity of the four-phase model (The white solid coil is the main potential well): (a) x-y section (z = 0 mm); (b) y-z section (x = 0 mm); (c) x-z section (y = 0 mm).

    图 7  四相位模式的声强等值面图 (a) Is = 3.0 kW/m2; (b) Is = 1.2 kW/m2; (c) Is = 1.2 kW/m2

    Fig. 7.  Equipotential surface of sound intensity of the four-phase model: (a) Is = 3.0 kW/m2; (b) Is = 1.2 kW/m2; (c) Is = 1.2 kW/m2

    图 8  实验设置

    Fig. 8.  Experimental settings.

    图 9  实验结果图 (a)两相位模式结果; (b)四相位模式结果

    Fig. 9.  Picture of experimental results: (a) Result of two-phase model; (b) result of four-phase model.

  • [1]

    Stindt A, Andrade M A B, Albrecht M, Adamowski J C, Panne U, Riedel J 2014 Rev. Sci. Instrum. 85 015

    [2]

    Brandt E H 1989 Science 243 349Google Scholar

    [3]

    Li J, Jamieson W D, Dimitriou P, Xu W, Rohde P, Martinac B, Baker M, Drinkwater B W, Castell O K, Barrow D A 2022 Nat. Commun. 13 4125Google Scholar

    [4]

    Tait A, Glynne-Jones P, Hill A R, Smart D E, Blume C, Hammarstrom B, Fisher A L, Grossel M C, Swindle E J, Hill M, Davies D E 2019 Sci. Rep. 9 9789Google Scholar

    [5]

    Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar

    [6]

    Morris R H, Dye E R, Axford D, Newton M I, Beale J H, Docker P T 2019 Sci. Rep. 9 12431Google Scholar

    [7]

    冯乙婷, 姬晓亮, 张永建, Muhammad M M, 臧渡洋 2021 中国科学: 物理学 力学 天文学 5 147Google Scholar

    Feng Y T, Ji X L, Zhang Y J, Muhammad M M, Zang D Y 2021 Sci. Sin-Phys. Mech. Astron. 5 147Google Scholar

    [8]

    张泽辉, 刘康祺, 邸文丽, 陈阵, 臧渡洋 2020 中国科学: 物理学 力学 天文学 50 113Google Scholar

    Zhang Z H, Liu K Q, Di W L, Chen Z, Zang D Y 2020 Sci. Sin-Phys. Mech. Astron. 50 113Google Scholar

    [9]

    Kepa M W, Tomizaki T, Sato Y, Ozerov D, Sekiguchi H, Yasuda N, Aoyama K, Skopintsev P, Standfuss J, Cheng R, Hennig M, Tsujino S 2022 Sci. Rep. 12 5349Google Scholar

    [10]

    Watanabe A, Hasegawa K, Abe Y 2018 Sci. Rep. 8 1

    [11]

    魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊 2020 物理学报 69 184702Google Scholar

    Wei Y J, Zhang J, Deng S C, Zhang Y J, Yang Y J, Liu S H, Chen H 2020 Acta Phys. Sin. 69 184702Google Scholar

    [12]

    Foresti D, Nabavi M, Klingauf M, Ferrari A, Poulikakos D 2013 PNAS 110 12549Google Scholar

    [13]

    秦修培, 耿德路, 洪振宇, 魏炳波 2017 物理学报 66 124301Google Scholar

    Qin X P, Geng D L, Hong Z Y, Wei B B 2017 Acta Phys. Sin. 66 124301Google Scholar

    [14]

    洪振宇, 吕勇军, 解文军, 魏炳波 2006 科学通报 1 2714Google Scholar

    Hong Z Y, Lyu Y J, Xie W J and Wei B B 2006 Chin. Sci. Bull. 1 2714Google Scholar

    [15]

    阮永都, 梁旭 2020 中国科学: 技术科学 50 1226Google Scholar

    Ruan Y D, Liang X 2020 Sci. Sinica Tec. ) 50 1226Google Scholar

    [16]

    Marzo Pérez A, Seah S A, Drinkwater B W, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661Google Scholar

    [17]

    Fushimi T, Yamamoto K, Ochiai Y 2021 Sci. Rep. 11 12678Google Scholar

    [18]

    范皓然, 尹冠军, 李盼, 郭建中 2018 声学学报 43 364

    Fan H R,Yin G J, Li P, Guo J Z 2018 Acta Acust. 43 364

    [19]

    Roslyakov S, Emelyanov F, Erzakova N, Sivkov E 2019 IOP Conference 516 012033Google Scholar

    [20]

    Wei L L, Yin G J, Han H, Guo J Z 2021 International Ultrasonics Symposium (IUS) Xi'an, China, November 16, 2021 pp1–4

    [21]

    朱哲民, 龚秀芬, 杜功焕 2012 声学基础(第三版) (南京: 南京大学出版社) 第211—220页

    Zhu Z M, Gong X F, Du G H 2012 Fundamentals of Acoustics (Vol. 3) (Nanjing: Nanjing University Press) pp211–220 (in Chinese)

  • [1] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究. 物理学报, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [2] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [3] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [4] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计. 物理学报, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [5] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测. 物理学报, 2022, 71(3): 037201. doi: 10.7498/aps.71.20211443
    [6] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [7] 吴学由, 梁金福. 超声场中单气泡的平移和非球形振动. 物理学报, 2021, 70(18): 184301. doi: 10.7498/aps.70.20210513
    [8] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [9] 冯康艺, 王成会. 超声场中空化泡对弹性粒子微流的影响. 物理学报, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [10] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究. 物理学报, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [11] 郑莉, 郭建中. 圆环形聚焦声场的构建与调控. 物理学报, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [12] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [13] 李盼池, 王海英, 宋考平, 杨二龙. 量子势阱粒子群优化算法的改进研究. 物理学报, 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [14] 丁亚军, 钱盛友, 胡继文, 邹孝. 超声相控阵在多层媒质中的声场模式优化. 物理学报, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [15] 徐晓辉, 李 晖. 基于长焦区聚焦换能器的扫描光声乳腺成像技术. 物理学报, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [16] 于 洁, 章 东, 刘晓宙, 龚秀芬, 宋富先. 圆锥面PVDF聚焦换能器的非线性声场理论及实验研究. 物理学报, 2007, 56(10): 5909-5914. doi: 10.7498/aps.56.5909
    [17] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [18] 应祟福, 李明轩, 钟高琦, 刘献铎, 杨玉瑞. 控制超声测量用换能器首次波幅度比的方案. 物理学报, 1981, 30(1): 91-96. doi: 10.7498/aps.30.91
    [19] 严仁博. 超声楔形换能器的体波和瑞利表面波指向性图案. 物理学报, 1974, 23(6): 41-50. doi: 10.7498/aps.23.41
    [20] 魏荣爵, 张淑仪. 超声波在悬浮液(水)中的吸收. 物理学报, 1965, 21(5): 1061-1074. doi: 10.7498/aps.21.1061
计量
  • 文章访问数:  4543
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-30
  • 修回日期:  2022-09-22
  • 上网日期:  2022-12-24
  • 刊出日期:  2023-01-05

/

返回文章
返回