搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声悬浮过程中圆柱体的旋转运动机理研究

秦修培 耿德路 洪振宇 魏炳波

引用本文:
Citation:

超声悬浮过程中圆柱体的旋转运动机理研究

秦修培, 耿德路, 洪振宇, 魏炳波

Rotation mechanism of ultrasonically levitated cylinders

Qin Xiu-Pei, Geng De-Lu, Hong Zhen-Yu, Wei Bing-Bo
PDF
导出引用
  • 研究了圆柱体在超声悬浮过程中的旋转运动机理.实验发现:悬浮圆柱体的密度和长径比越小,转动惯量越小,其稳态旋转的转速越大;反射端在水平方向的偏移会产生回复力矩,使圆柱体停止旋转,且圆柱体静止时的轴线方向与反射端偏移方向垂直;在圆柱体两端加入适当的外界干扰可以主动抑制其旋转.计算表明,悬浮圆柱体的旋转起源于其质心偏移产生的力矩,而反射端位置的偏移以及发射端的倾斜均会抑制圆柱体的旋转.
    The rotation of levitated object in the ultrasonic levitation experiment is a common phenomenon. This instability may give rise to many difficulties in locating and detecting the levitated object and even cause the experiment to fail. However, the relevant research of the rotation mechanism of levitated object is seldom carried out. In this work, the rotation mechanism of cylinder in a single-axis ultrasonic levitator is investigated experimentally and theoretically. In the ultrasonic levitation experiment, the cylinder begins to rotate about an axis along the vertical direction as it is levitated at the node between the emitter and reflector. The rotation speed of cylinder tends to a stable value due to the effect of the air resistance, and the final rotation direction is determined by its initial rotation state. Experimental results demonstrate that the rotation speed increases with the decreases of density and length-to-diameter ratio of the cylinder. In order to analyze the rotation mechanism, the finite element method is used to calculate the distribution of acoustic pressure field and the torque acting on the cylinder for each of three different cases. Numerical results reveal that the position offsets of the cylinder and the reflector as well as the tilt of the emitter can all result in the nonaxisymmetrical distribution of acoustic pressure field. Hence, a nonzero torque acting on the cylinder may be generated and the rotation state of the levitated cylinder is subsequently affected. The position offset of the cylinder can produce a torque driving itself to rotate and the torque increases with the increase of the deviation degree. A restoring torque suppressing the rotation of cylinder can be generated by deviating the reflector from the horizontal direction. The cylinder eventually keeps stationary state with its axis perpendicular to the offset direction of the reflector, showing good accordance with the experimental results. In addition, it is predicted that tilting the emitter can also offer a restoring torque which makes cylinder eventually static with its axis perpendicular to the plane through the axes of the emitter and the reflector. However, this restoring torque is approximately three orders of magnitude smaller than that generated by deviating the reflector. In the end, both experimental results and numerical simulations show that the rotation of the cylinder can be effectively suppressed under the disturbance of two fixed cylinders when the emitter and the reflector are coaxial. The cylinder eventually stays still and keeps coaxial with the two fixed cylinders.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51327901,51501153)资助的课题.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51327901, 51501153).
    [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军, 曹崇德, 魏炳波 1999 物理学报 48 250]

    [3]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [4]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [5]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [6]

    Puskar L, Tuckermann R, Frosch T, Popp J, Ly V, McNaughton D, Wood B R 2007 Lab Chip 7 1125

    [7]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [8]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [9]

    Yan Z L, Xie W J, Shen C L, Wei B B 2011 Acta Phys. Sin. 60 064302 (in Chinese) [鄢振麟, 解文军, 沈昌乐, 魏炳波 2011 物理学报 60 064302]

    [10]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [11]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 物理学报 61 134302]

    [12]

    Rudnick J, Barmatz M 1990 J. Acoust. Soc. Am. 87 81

    [13]

    Baer S, Andrade M A B, Esen C, Adamowski J C, Schweiger G, Ostendorf A 2011 Rev. Sci. Instrum. 82 105111

    [14]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [15]

    Foresti D, Nabavi M, Poulikakos D 2012 J. Fluid Mech. 709 581

    [16]

    Prez N, Andrade M A B, Canetti R, Adamowski J C 2014 J. Appl. Phys. 116 184903

    [17]

    Andrade M A B, Prez N, Adamowski J C 2014 J. Acoust. Soc. Am. 136 1518

    [18]

    Trinh E H, Robey J L 1994 Phys. Fluids 6 3567

    [19]

    Hong Z Y, L P, Geng D L, Zhai W, Yan N, Wei B 2014 Rev. Sci. Instrum. 85 104904

    [20]

    Andrade M A B, Bernassau A L, Adamowski J C 2016 Appl. Phys. Lett. 109 044101

    [21]

    Hong Z Y, Zhang J, Drinkwater B W 2015 Phys. Rev. Lett. 114 214301

    [22]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099

    [23]

    Gor'kov L P 1962 Sov. Phys. Dokl. 6 773

  • [1]

    Brandt E H 2001 Nature 413 474

    [2]

    Xie W J, Cao C D, Wei B B 1999 Acta Phys. Sin. 48 250 (in Chinese) [解文军, 曹崇德, 魏炳波 1999 物理学报 48 250]

    [3]

    Brotton S J, Kaiser R I 2013 Rev. Sci. Instrum. 84 055114

    [4]

    Chainani E T, Ngo K T, Scheeline A 2013 Anal. Chem. 85 2500

    [5]

    Benmore C J, Weber J K R 2011 Phys. Rev. X 1 011004

    [6]

    Puskar L, Tuckermann R, Frosch T, Popp J, Ly V, McNaughton D, Wood B R 2007 Lab Chip 7 1125

    [7]

    Radnik J, Bentrup U, Leiterer J, Brckner A, Emmerling F 2011 Chem. Mater. 23 5425

    [8]

    Wolf S E, Leiterer J, Kappl M, Emmerling F, Tremel W 2008 J. Am. Chem. Soc. 130 12342

    [9]

    Yan Z L, Xie W J, Shen C L, Wei B B 2011 Acta Phys. Sin. 60 064302 (in Chinese) [鄢振麟, 解文军, 沈昌乐, 魏炳波 2011 物理学报 60 064302]

    [10]

    Saha A, Basu S, Suryanarayana C, Kumar R 2010 Int. J. Heat Mass Transfer 53 5663

    [11]

    Shao X P, Xie W J 2012 Acta Phys. Sin. 61 134302 (in Chinese) [邵学鹏, 解文军 2012 物理学报 61 134302]

    [12]

    Rudnick J, Barmatz M 1990 J. Acoust. Soc. Am. 87 81

    [13]

    Baer S, Andrade M A B, Esen C, Adamowski J C, Schweiger G, Ostendorf A 2011 Rev. Sci. Instrum. 82 105111

    [14]

    Barrios G, Rechtman R 2008 J. Fluid Mech. 596 191

    [15]

    Foresti D, Nabavi M, Poulikakos D 2012 J. Fluid Mech. 709 581

    [16]

    Prez N, Andrade M A B, Canetti R, Adamowski J C 2014 J. Appl. Phys. 116 184903

    [17]

    Andrade M A B, Prez N, Adamowski J C 2014 J. Acoust. Soc. Am. 136 1518

    [18]

    Trinh E H, Robey J L 1994 Phys. Fluids 6 3567

    [19]

    Hong Z Y, L P, Geng D L, Zhai W, Yan N, Wei B 2014 Rev. Sci. Instrum. 85 104904

    [20]

    Andrade M A B, Bernassau A L, Adamowski J C 2016 Appl. Phys. Lett. 109 044101

    [21]

    Hong Z Y, Zhang J, Drinkwater B W 2015 Phys. Rev. Lett. 114 214301

    [22]

    Lee C P, Wang T G 1993 J. Acoust. Soc. Am. 94 1099

    [23]

    Gor'kov L P 1962 Sov. Phys. Dokl. 6 773

  • [1] 刘昱, 贺西平, 贺升平. 多晶材料散射模型及识别实验研究. 物理学报, 2024, 73(3): 034302. doi: 10.7498/aps.73.20231578
    [2] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2023, 72(1): 014301. doi: 10.7498/aps.72.20221547
    [3] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [4] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [5] 周彦玲, 范军, 王斌, 李兵. 水下环形凹槽圆柱体散射声场空间指向性调控. 物理学报, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [6] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [7] 张忠强, 范晋伟, 张福建, 程广贵, 丁建宁. 水流在旋转黑磷纳米管内轴向驱动特性. 物理学报, 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [8] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [9] 王茹, 王向贤, 杨华, 叶松. TE0导模干涉刻写周期可调亚波长光栅理论研究. 物理学报, 2016, 65(9): 094206. doi: 10.7498/aps.65.094206
    [10] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [11] 龚振兴, 李友荣, 彭岚, 吴双应, 石万元. 旋转环形浅液池内双组分溶液耦合热-溶质毛细对流渐近解. 物理学报, 2013, 62(4): 040201. doi: 10.7498/aps.62.040201
    [12] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [13] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [14] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析. 物理学报, 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [15] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [16] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [17] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [18] 虞益挺, 苑伟政, 乔大勇, 梁 庆. 一种在线测量微机械薄膜残余应力的新结构. 物理学报, 2007, 56(10): 5691-5697. doi: 10.7498/aps.56.5691
    [19] 徐世珍, 贾天卿, 孙海轶, 李晓溪, 程兆谷, 冯东海, 李成斌, 徐至展. 飞秒激光在石英玻璃中诱导微爆炸的理论研究. 物理学报, 2005, 54(9): 4146-4150. doi: 10.7498/aps.54.4146
    [20] 赵建林, 杨德兴. 圆柱体的空间圆锥光反射、折射与衍射. 物理学报, 2002, 51(9): 1972-1977. doi: 10.7498/aps.51.1972
计量
  • 文章访问数:  6285
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-21
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-06-05

/

返回文章
返回