搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多阶动态移焦的透皮给药增效研究

龚新越 薛洪惠 宋人杰 郭杨 马勇 屠娟

引用本文:
Citation:

基于多阶动态移焦的透皮给药增效研究

龚新越, 薛洪惠, 宋人杰, 郭杨, 马勇, 屠娟

The synergistic effect of ultrasound transdermal drug delivery based on multi-stage dynamic focal-shifting

Gong Xinyue, Xue Honghui, Song Renjie, Guo Yang, Ma Yong, Tu Juan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 针对传统超声透皮给药技术中声场聚焦模式单一、药物粒子穿透深度及分布范围受限等关键瓶颈问题,本研究提出了一种基于超声换能器阵列的多阶动态移焦发射策略,旨在实现声能量在皮肤深度方向的动态重分布,从而提升纳米粒子的透皮效率与分布均匀性。通过调控换能器阵元激励相位,构建多阶移动的声聚焦作用路径,并通过在体动物实验与有限元仿真联合验证其透皮给药效果。结果显示,与固定焦点模式相比,动态聚焦显著提升了药物粒子的经皮渗透深度与空间分布均匀性,其平均渗透深度可提高65.7%,荧光积分强度提升69.3%,并在皮肤组织中形成更均匀的沉积带结构。有限元仿真结果进一步揭示了该模式下粒子扩散演化行为与焦点动态轨迹之间的强耦合机制,证实动态移焦模式下的“多焦点接力式”驱动效应可在在显著优化粒子的经皮渗透效率的同时,有效降低局部能量沉积引发的潜在风险,为构建高效、安全、可控的超声透皮递药技术提供了重要的理论基础与技术支撑。
    Ultrasound-assisted transdermal drug delivery (UTDD) is a promising noninvasive strategy to overcome the skin barrier, yet conventional fixed-focus ultrasound approaches suffer from limited penetration depth, localized accumulation, and risk of thermal damage. To address these challenges, we propose a phased-array based dynamic focusing strategy, in which the acoustic focus is shifted sequentially along the depth direction. This approach aims to construct a continuous longitudinal acoustic radiation pathway that can sustain particle migration into deeper skin layers.
    In vivo experiments were conducted with FITC-labeled nanoparticles on rat dorsal skin under three conditions: natural permeation, fixed focus (~0.5 mm beneath the skin), and dynamic focusing (scanned from the surface to 1 mm). After 10 minutes of ultrasound, fluorescence microscopy revealed that fixed focus enhanced penetration compared with natural permeation, while dynamic focusing further improved delivery, increasing average depth by 65.7%, maximum depth by 41.2%, and fluorescence intensity by 69.3% (Fig.1). Dynamic focusing also produced a more uniform and continuous deposition band, unlike the localized accumulation seen with fixed focus.
    To elucidate the underlying mechanisms, a two-dimensional finite element model was established in COMSOL Multiphysics. Simulation results (Fig.2) revealed that, this “multi-focus relay” effect provided a continuous driving force pathway, enabling particles to follow the shifting focal positions. Trajectory analysis confirmed that the number of particles reaching deeper layers (up to 5 mm) increased by nearly 14 times under dynamic focusing compared with fixed focus, while the lateral distribution width expanded by 46.1%.
    In conclusion, both experimental and simulation results demonstrate that phasedarray dynamic focusing significantly enhances penetration depth, migration efficiency, and distribution uniformity of nanoparticles in UTDD. By constructing a continuous acoustic radiation pathway in the depth dimension, this approach improves delivery efficiency while mitigating local energy accumulation, providing a safer and more effective strategy for ultrasound-mediated transdermal therapy.
  • [1]

    Jeong W Y, Kwon M, Choi H E, Kim K S 2021 Biomater. Res. 25 24

    [2]

    Gaikwad S S, Zanje A L, Somwanshi J D 2024 Int. J. Pharm. 652 123856

    [3]

    Wiedersberg S, Guy R H 2014 J. Controlled Release 190 150

    [4]

    Zhang H, Zhai Y J, Yang X Y, Zhai G X 2015 Curr. Pharm. Des. 12 2713

    [5]

    Prausnitz M R, Langer R 2008 Nat. Biotechnol. 26 1261

    [6]

    Polat B E, Deen W M, Langer R, Blankschtein D 2012 J. Controlled Release 158 250

    [7]

    Yu C, Shah A, Amiri N, Marcus C, Nayeem M O G, Bhayadia A K, Karami A, Dagdeviren C 2023 Adv. Mater. 35 2300066

    [8]

    Akhtar N, Singh V, Yusuf M, Khan R A 2020 Biomed. Eng.-Biomed. Tech. 65 243

    [9]

    Smith N B 2008 Expert Opin. Drug Deliv. 5 1107

    [10]

    Tian Y H, Liu Z, Tan H Y, Hou J H, Wen X, Yang F, Cheng W 2020 Int. J. Nanomed. 15 401

    [11]

    Sabbagh F, Muhamad I I, Niazmand R, Dikshit P K, Kim B S 2022 Int. J. Biol. Macromol. 203 222

    [12]

    Al-Bataineh O M, Lweesy K, Fraiwan L 1st Middle East Conference on Biomedical Engineering Sharjah, United Arab Emirates, February 21-24, 2011 p316

    [13]

    Maione E, Shung K K, Meyer R J, Hughes J W, Newnham R E, Smith N B 2002 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 49 1430

    [14]

    Ding Y J, Qian S Y, Hu J W, Zou X 2021 Acta Phys. Sin. 61 248 (in Chinese) [丁亚军, 钱盛友, 胡继文, 邹孝 2021 物理学报 61 248]

    [15]

    Xu F, Lu M Z, Wan X M 2010 Acta Phys. Sin. 52 1349 (in Chinese) [徐丰, 陆明珠, 万明习 2010 物理学报 52 1349]

    [16]

    Burgess A, Shah K, Hough O, Hynynen K 2015 Expert Rev. Neurother. 15 477

    [17]

    Meng Y, Hynynen K, Lipsman N 2021 Nat. Rev. Neurol. 17 7

    [18]

    Biskanaki F, Tertipi N, Sfyri E, Kefala V, Rallis E 2025 Appl. Sci. 15 4958

    [19]

    Özsoy Ç, Lafci B, Reiss M, Deán-Ben X L, Razansky D 2023 Photoacoustics 31 100508

    [20]

    Qian J, Xi W, Zhou X W, Tan J W, Wang Z B, Du Y H, Li Y H 2022 Acta Phys. Sin. 71 281 (in Chinese) [钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩 2022 物理学报 71 281]

    [21]

    Zhang H J, Pan Y P, Hou Y, Li M H, Deng J, Wang B C, Hao S L 2024 Small 20 2306944

    [22]

    Caprifico A E, Polycarpou E, Foot P J S, Calabrese G 2020 Trends Pharmacol. Sci. 41 686

    [23]

    Moreno V M, Baeza A, Vallet-Regí M 2021 Acta Biomater. 121 263

    [24]

    Nguyen T T, Nguyen H N, Nghiem T H L, Do X H, To T T, Do T X P, Do D L, Nguyen H G, Nguyen H M, Nguyen N D, Luu M Q, Nguyen T N, Nguyen T B N, Nguyen V T, Pham V T, Than U T T, Hoang T M N 2024 Sci. Rep. 14 6969

    [25]

    Do Nascimento V M, Nantes Button V L D S, Maia J M, Costa E T, Oliveira E J V 2003 Medical Imaging San Diego, CA, May 23, 2003 p86

    [26]

    Husseini G A, Pitt W G 2008 Adv. Drug Delivery Rev. 60 1137

    [27]

    Paris J L, Mannaris C, Cabañas M V, Carlisle R, Manzano M, Vallet-Regí M, Coussios C C 2018 Chem. Eng. J. 340 2

    [28]

    Gor'kov L. P. 1961 Dokl. Akad. Nauk SSSR 140 88

    [29]

    Sun F, Zeng Z M, Jin S J, Zhan X L 2011 Acta Phys. Sin. 60 435 (in Chinese) [孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳 2011 物理学报 60 435]

    [30]

    Lintzeri D A, Karimian N, Blume‐Peytavi U, Kottner J 2022 J. Eur. Acad. Dermatol. Venereol. 36 1191

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [2] 林基艳, 李耀, 陈诚, 林书玉, 郭林伟, 徐洁. 柱状和声学表面结构的压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250901
    [3] 叶文旭, 江昊, 王怡, 林书玉. 基于声黑洞结构的夹心式弯曲振动超声换能器. 物理学报, doi: 10.7498/aps.74.20250767
    [4] 申潇卓, 吴鹏飞, 林伟军. 脉动气泡在黏性介质中的声发射. 物理学报, doi: 10.7498/aps.73.20240826
    [5] 丁怡洋, 邹帅, 孙华, 苏晓东. 金属网格-透明导电氧化物复合型透明电极的瑞利分析和仿真. 物理学报, doi: 10.7498/aps.73.20240230
    [6] 付亚鹏, 孙乾东, 李博艺, 他得安, 许凯亮. 基于RCA阵列三维超快超声血流成像方法仿真研究. 物理学报, doi: 10.7498/aps.72.20222106
    [7] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, doi: 10.7498/aps.72.20221547
    [8] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, doi: 10.7498/aps.72.20221571
    [9] 钱骏, 谢伟, 周小伟, 谭坚文, 王智彪, 杜永洪, 李雁浩. 基于换能器驱动信号特征的高强度聚焦超声焦域损伤实时监测. 物理学报, doi: 10.7498/aps.71.20211443
    [10] 曾胜洋, 贾璐, 张书增, 李雄兵, 王猛. 非线性表面波的二阶微扰解及特性分析. 物理学报, doi: 10.7498/aps.71.20212445
    [11] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法. 物理学报, doi: 10.7498/aps.66.154303
    [12] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, doi: 10.7498/aps.59.8535
    [13] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, doi: 10.7498/aps.59.2090
    [14] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, doi: 10.7498/aps.58.327
    [15] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, doi: 10.7498/aps.57.6722
    [16] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, doi: 10.7498/aps.56.321
    [17] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, doi: 10.7498/aps.56.1617
    [18] 陆明珠, 万明习, 施雨, 宋延淳. 多阵元高强度聚焦超声多目标控制方法研究. 物理学报, doi: 10.7498/aps.51.928
    [19] 杜功焕. 弛豫媒质中有限束超声波的非线性传播畸变理论. 物理学报, doi: 10.7498/aps.38.873
    [20] 应祟福, 李明轩, 钟高琦, 刘献铎, 杨玉瑞. 控制超声测量用换能器首次波幅度比的方案. 物理学报, doi: 10.7498/aps.30.91
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-10

/

返回文章
返回