搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性毛细管内微气泡弹跳行为

李秀如 刘雅璐 马佳昱 吴玉婷 王成会 莫润阳

引用本文:
Citation:

刚性毛细管内微气泡弹跳行为

李秀如, 刘雅璐, 马佳昱, 吴玉婷, 王成会, 莫润阳

Bouncing Behavior of Microbubbles in Rigid Capillary Tube

Li Xiu-Ru, Liu Ya-Lu, Ma Jia-Yu, Wu Yu-Ting, Wang Cheng-Hui, Mo Run-Yang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文系统探究了刚性毛细管约束下微气泡在超声场中的弹跳行为及其动力学特性。实验采用高速摄像技术捕捉了单泡、双泡及三泡系统在粘弹性介质中的运动轨迹,并结合频谱分析揭示了气泡的振荡频率、迁移规律及多泡相互作用机制。结果表明,气泡的弹跳行为受超声驱动频率、管壁约束、流体粘性及气泡间耦合作用的协同调控;单泡呈现周期性左右迁移,其振荡频率略低于超声基频,频谱表现出非对称边带分布;双泡系统经历抑制、加速迁移、位置交换等五个阶段,两个泡振荡存在相位差;三泡系统则表现出更复杂的三角构型演化与时序性迁移,多泡协同效应增强了非线性频域特征。管径与流体粘度分别通过改变附加质量效应和粘性能量耗散影响气泡弹跳周期。基于改进的耦合Keller-Miksis方程,理论模型引入镜像气泡效应,定量解析了管壁约束下气泡的共振频率偏移及非线性声响应特性。数值分析进一步量化了泡间距、管壁位置及介质粘性对系统非线性共振频率与相位差的调控规律。本研究为受限环境中气泡-声场-流固耦合机制提供了新见解,对微流控器件优化与超声医学应用具有重要指导意义。
    This study systematically investigates the bouncing behavior and dynamics of microbubbles under ultrasound excitation within a rigid capillary. It aims to provide quantitative insights into their oscillation characteristics, migration trajectories, and phase modulation mechanisms for applications in microfluidics, contrast-enhanced ultrasound imaging, and controlled drug delivery. A high-speed imaging system was employed to track the motion of single-, double-, and triple-bubble systems in a viscoelastic medium inside a capillary with a 0.5 mm inner diameter. Under a 28 kHz ultrasound field, bubble dynamics were captured at 100,000 frames per second. Image processing techniques, including dynamic threshold segmentation and morphological operations, were applied to extract bubble contours and centroid trajectories. Spectral analysis via Fast Fourier Transform (FFT) was performed to identify oscillation frequencies and modulation characteristics. Experimental results showed that a single bubble exhibits periodic lateral migration with oscillation frequency slightly below the driving frequency, alongside an asymmetric sideband distribution in its spectrum. In the two-bubble system, five distinct dynamic stages were identified: initial suppression, accelerated migration, interaction dominance, position exchange, and a secondary approach to the wall. The bubbles oscillated at a common dominant frequency of 27.32 kHz but maintained phase difference. Modulation sidebands of approximately 0.3 kHz were observed, indicating nonlinear coupling. The three-bubble system exhibited more complex spatiotemporal evolution, including sequential migration and transitions between triangular and mirror-symmetric configurations. A notable sideband at 0.1 kHz suggested that multi-bubble synergy enhances nonlinear behavior. The tube diameter and fluid viscosity were found to influence the bouncing period through added mass effects and viscous energy dissipation, respectively. The period increased significantly with decreasing tube diameter and decreased with reducing fluid viscosity. Theoretical modeling incorporated the mirror bubble effect into the coupled Keller-Miksis equations to account for wall confinement, successfully simulating the oscillation and translation of confined microbubbles. Numerical analysis further indicated that interbubble distance, wall proximity, and medium viscosity modulate the system's dynamics. Specifically, the bubble resonance frequency is regulated by inter-bubble distance and wall confinement. The two-bubble system exhibits both in-phase and out-of-phase modes, with the latter being more sensitive to distance variations. Near the wall, the oscillation frequency decreases, and the phase difference attenuation accelerates. Increased medium viscosity weakens the phase coupling between bubbles, an effect particularly pronounced for smaller bubbles. This study not only enhances the understanding of multi-bubble synergistic effects in confined spaces but also provides a theoretical foundation and technical reference for optimizing ultrasound contrast agents, designing microfluidic devices, and developing targeted therapies in biomedicine.
  • [1]

    Jiang L L, Xue Z Q, Park H 2019 Int. J. Heat Mass Transf. 138 1211

    [2]

    Zhai H, Xue Z, Park H, Aizawa Y, Baba Y, Zhang Y 2020 J. Nat. Gas Sci. Eng. 77 103233

    [3]

    Chen H, Kreider W, Brayman A, Bailey R, Matula J 2011 Phys. Rev. Lett. 106 034301

    [4]

    Miller D L, Quddus J 2000 Proc. Natl. Acad. Sci. U.S.A. 97 10179

    [5]

    Marmottant P, Hilgenfeldt S 2004 Proc. Natl. Acad. Sci. U.S.A. 101 9523

    [6]

    Liu Y, Zhou Y, Zhang W, Chen S, Liang S 2024 J. Biomed. Eng. 41 919

    [7]

    Sambo C, Liu N, Shaibu R, Ahmed A, Hashish R 2023 Geoenergy Sci. Eng. 221 111185

    [8]

    Mamba S S, Magniez J C, Zoueshtiagh F, Baudoin M 2018 J. Fluid Mech. 838 165

    [9]

    Averkiou M A, Bruce M F, Powers J E, Sheeran P S, Burn P N 2020 Ultrasound Med. Biol. 46 498

    [10]

    Battat S, Weitz D A, Whitesides G M 2022 Chem. Rev. 122 6921

    [11]

    Rasouli M R, Tabrizian M 2019 Lab Chip 19 3316

    [12]

    Liao A H, Ho H C, Lin Y C, Chen H K, Wang C H 2015 PLoS One. 10 e0138500

    [13]

    Minnaert M 1933 Philos. Mag. 16 235

    [14]

    Plesset M S 1949 J. Appl. Mech. 16 277

    [15]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [16]

    Qin S, Ferrara K W 2006 Phys. Med. Biol. 51 5065

    [17]

    Zhong P, Zhou Y, Zhu S 2001 Ultrasound Med. Biol. 27 119

    [18]

    Caskey C F, Stieger S M, Qin S, Dayton P A, Ferrara K W 2007 J. Acoust. Soc. Am. 122 1191

    [19]

    Zhang L, Chen W 2024 Ultrason. Sonochem. 110 107050

    [20]

    An Y 2011 Phys. Rev. E 83 066313

    [21]

    Wang C, Lin S 2011 Acta Acust. 36 325

    [22]

    Zilonova E, Solovchuk M, Sheu T W H 2019 Phys. Rev. E 99 023109

    [23]

    Zou Q, Zhong X, Zhang B, Gao A, Wang X, Li Z, Qin D 2023 Ultrasonics 134 107089

    [24]

    Fei Y J, Zhu C Y, Fu T T, Gao X Q, Ma Y G 2022 Chin. J. Chem. Eng. 50 66

    [25]

    Hu M, Wang F, Li Y, Chen L, Wu W, Huo P, Deng D 2025 Phys. Rev. Lett. 134 104004

    [26]

    Magnaudet J, Legendre D 1998 Phys. Fluids 10 550

    [27]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133

    [28]

    Qi H, Liu J, Sun X, Deng P, Zhang D, Song Y 2024 Phys. Fluids 36

    [29]

    Alt E, Banyai S, Banyai M, Koppensteiner R 2002 Thromb. Res. 107 101

    [30]

    Lei Z, Dong X, Zuo X, Wang C, Wu Y, Lin S, Guo J 2024 J. Acoust. Soc. Am. 156 3373

    [31]

    Guo C, Wang J, Li X, Yang S, Li W 2024 Chem. Eng. Process. 199 109765

    [32]

    Doinikov A A 2001 Phys. Rev. E 64 026301

    [33]

    Ida M 2009 Phys. Rev. E 79 016307

    [34]

    Sugita N, Sugiura T 2017 Ultrasonics 74 174

    [35]

    Regnault G, Doinikov A A, Laloy G, Mauger C, Benon P, Catheline S, Inserra C 2024 Phys. Fluids 36

  • [1] 张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波. 超声场中气泡运动规律及其与枝晶相互作用机制. 物理学报, doi: 10.7498/aps.73.20240721
    [2] 乌日乐格, 那仁满都拉. 具有传质传热及扩散效应的双气泡的相互作用. 物理学报, doi: 10.7498/aps.72.20230863
    [3] 潘文韬, 文琳, 李姗姗, 潘振海. Y型微通道内气泡非对称破裂行为的数值研究. 物理学报, doi: 10.7498/aps.71.20210832
    [4] 贺传晖, 刘高洁, 娄钦. 大密度比气泡在含非对称障碍物微通道内的运动行为. 物理学报, doi: 10.7498/aps.70.20211328
    [5] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用. 物理学报, doi: 10.7498/aps.69.20200764
    [6] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, doi: 10.7498/aps.68.20191198
    [7] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束. 物理学报, doi: 10.7498/aps.68.20190477
    [8] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, doi: 10.7498/aps.67.20181311
    [9] 郑监, 张舵, 蒋邦海, 卢芳云. 气泡与自由液面相互作用形成水射流的机理研究. 物理学报, doi: 10.7498/aps.66.044702
    [10] 沙莎, 陈志华, 张庆兵. 激波与SF6球形气泡相互作用的数值研究. 物理学报, doi: 10.7498/aps.64.015201
    [11] 王树山, 李梅, 马峰. 爆炸气泡与自由水面相互作用动力学研究. 物理学报, doi: 10.7498/aps.63.194703
    [12] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, doi: 10.7498/aps.63.054705
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, doi: 10.7498/aps.62.120502
    [14] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究. 物理学报, doi: 10.7498/aps.62.214703
    [15] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究. 物理学报, doi: 10.7498/aps.61.224702
    [16] 张阿漫, 王超, 王诗平, 程晓达. 气泡与自由液面相互作用的实验研究. 物理学报, doi: 10.7498/aps.61.084701
    [17] 龚燕君, 章 东, 郗晓宇, 龚秀芬, 刘 政. 调频激励增强微气泡的次谐波理论和实验研究. 物理学报, doi: 10.7498/aps.56.7051
    [18] 陈陆君, 梁昌洪, 吴鸿适. 水槽中孤波相互作用的微扰变分分析. 物理学报, doi: 10.7498/aps.41.1745
    [19] 王耀俊. 超声与固体中含气泡层的相互作用. 物理学报, doi: 10.7498/aps.41.37
    [20] 钱祖文. 水中气泡之间的声相互作用. 物理学报, doi: 10.7498/aps.30.442
计量
  • 文章访问数:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-17

/

返回文章
返回