-
为了实现单个压电超声振动系统的多维超声辐射、有效增大系统的超声辐射面积,本文提出了一种新型纵弯正交耦合压电超声振动系统。它由纵向正交复合振动夹心式压电超声换能器、纵向振动圆锥形变幅杆和弯曲振动金属圆盘组成。基于耦合振动理论和力电类比原理建立了振动系统的机电等效电路模型,推导了其共振、反共振频率方程。通过等效电路法、有限元仿真以及实验测试对振动系统的纵弯耦合振动特性进行了研究,研究结果表明该振动系统可有效实现二维四向超声辐射,为该类新型超声振动系统的工程设计提供了理论基础。研究成果有望在超声凝聚、超声除雾等领域获得广泛应用。To address the limitations of conventional one-dimensional longitudinal vibration transducers in terms of single-directional acoustic radiation and limited radiation area, this study proposes a novel longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system(The vibration schematic diagram of the vibration system is shown in Fig.16.). By synergistically integrating the orthogonal longitudinal vibration of a sandwich-type piezoelectric transducer, displacement amplification via conical horns, and flexural vibration of metal disks, the system achieves two-dimensional four-directional large-area ultrasonic radiation.
A combination of theoretical modeling, finite element simulation, and experimental validation was employed to investigate the system's dynamic characteristics. First, an electromechanical equivalent circuit model was established based on coupled vibration theory and electro-mechanical analogy principles, from which resonance/anti-resonance frequency equations were derived. Subsequently, finite element simulations using COMSOL Multiphysics were conducted to analyze impedance responses, vibration modes, and acoustic radiation characteristics in air. Finally, prototype fabrication and performance verification were performed through impedance analyzer measurements, laser vibrometry, and ultrasonic de-misting experiments.
Theoretical predictions of anti-phase (22,871 Hz) and in-phase (23,016 Hz) resonance frequencies showed relative errors below 3.7% compared to experimental results (22,086 Hz and 22,196 Hz). Finite element simulations combined with experimental validation confirmed the excitation mechanism of 5th-order flexural vibration in the disks. Acoustic directivity patterns revealed a multi-beam radiation pattern with coexisting main lobes and side lobes(The directional patterns under anti-phase and in-phase vibration modes is shown in Fig.17.), while in-phase vibration mode demonstrated higher ultrasonic radiation intensity in the near-field region. Furthermore, under 200 W input power, the system reduced smoke concentration within 70 seconds, demonstrating its feasibility for gas treatment applications.
By leveraging the synergistic effect of orthogonal longitudinal coupling and flexural vibration, this design overcomes the limitations of traditional transducers and provides theoretical and technical support for high-power multi-directional acoustic radiation. The research outcomes offer promising solutions for applications in ultrasonic dust removal, defoaming, and other gas-phase processing fields.-
Keywords:
- Piezoelectric ultrasonic transducer /
- 2D coupled vibration /
- Electro-mechanical equivalent circuit /
- Vibration modal
-
[1] Gallego-Juárez J A 2010Phys. Procedia 3 35
[2] Ensminger D, Bond L J 2024Ultrasonics: fundamentals, technologies, and applications (London: CRC Press) pp1-22
[3] Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016Mater. Process. Fundam. 1 125
[4] Cheng J, Li X, Yang J 2021The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1-30(in Chinese) [程建春, 李晓东, 杨军2021声学学科现状以及未来发展趋势(北京: 科学出版社)第1-30页]
[5] Wang S, Lin S 2019Acta Phys. Sin. 68 24303(in Chinese) [王莎, 林书玉2019物理学报68 24303]
[6] Fu Z, Xian X, Lin S, Wang C, Hu W, Li G 2012ULTRASONICS 52 578
[7] Liang Z, Mo X, Zhou G 2017Acta Acust. 42 7
[8] Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010Phys. Procedia 3 135
[9] Liang Z, Zhou G, Mo X 2009Piezoelectr. Acoustoopt. 31 760(in Chinese) [梁召峰, 周光平, 莫喜平2009压电与声光31 760]
[10] He X, Zhang H 2016Sci. Sin.: Phys. Mech. Astron. 3 17(in Chinese) [贺西平, 张海岛2016中国科学: 物理学, 力学, 天文学3 17]
[11] Xu L, Chang Y, Guo L, Wang Y, Xu F 2016Acta Acust. 41 105(in Chinese) [许龙, 常燕, 郭林伟, 王月兵, 徐方迁2016声学学报41 105]
[12] Xu J, Lin S 2012Acta Acust. 37 408(in Chinese) [许龙, 林书玉2012声学学报37 408]
[13] Xu J, Lin S, Ma Y, Tang Y 2017SENSORS-BASEL 17 2850
[14] Liang Z, Mo X, Zhou G 2011Acta Acust. 36 369(in Chinese) [梁召峰, 莫喜平, 周光平2011声学学报36 369]
[15] K. Itoh, E. Mori 1972J. Acoust. Soc. Jpn. 28 127
[16] K. Itoh, E. Mori 1973J. Acoust. Soc. Jpn. 29 28
[17] Xu L, Qiu X, Zhou J, Li F, Zhang H, Wang Y 2019Smart Mater. Struct. 28 025017
[18] Du Y, Xu L, Zhou G 2021Sci. Sin.: Phys. Mech. Astron. 51 10(in Chinese) [杜耀东, 许龙, 周光平2021中国科学: 物理学, 力学, 天文学51 10]
[19] Li F, Liu S, Xu L, Zhang H, Zeng X, Chen Z 2023Sci. Sin.: Phys. Mech. Astron. 53 194(in Chinese) [李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江2023中国科学: 物理学, 力学, 天文学53 194]
[20] Xu L, Zhou J, Chang Y, Li F, Li W 2018Acta Acust. 43 786(in Chinese) [许龙, 周锦程, 常燕, 李凤鸣, 李伟东2018声学学报43 786]
[21] Khmelev V N, Shalunov A V, Nesterov V A 2021ULTRASONICS 114 106413
[22] Sang Y, Lan Y, Ding Y 2016Acta Phys. Sin. 65 1(in Chinese) [桑永杰, 蓝宇, 丁玥文2016物理学报65 1]
[23] Liu S, Xu L, Zhang Z, Chen Z, Shen J 2014Acta Acust. 39 104(in Chinese) [刘世清, 许龙, 张志良, 陈赵江, 沈建国2014声学学报39 104]
[24] Martin G E 1964J. Acoust. Soc. Am. 36 1496
[25] Kalthoff J F, Winkler S 1988Impact Load. Dyn. Behav. Mater. 1 185
[26] Pan R, Mo X, Chai Y, Zhang X,Tian Z 2024Acta Phys. Sin. 73 194301(in Chinese) [潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤2024物理学报73 194301]
[27] Chen C, Dong Y, Wang S, Hu L, Lin S 2022J. Acoust. Soc. Am. 151 2712
[28] Zhao F, Feng D, Guo D, Fang Y 2002 Acta Acust. 27 554(in Chinese) [赵福令, 冯冬菊, 郭东明, 方亚英2002声学学报27 554]
[29] Zhang X, Liang B 2018Appl. Acoust. 129 284
计量
- 文章访问数: 70
- PDF下载量: 6
- 被引次数: 0