搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵弯正交耦合压电超声振动系统的设计及振动性能研究

许龙 李雪松 姚磊 龚涛 梁召峰

引用本文:
Citation:

纵弯正交耦合压电超声振动系统的设计及振动性能研究

许龙, 李雪松, 姚磊, 龚涛, 梁召峰

Design and Vibration Performance Study of a Longitudinal-Bending Orthogonal Coupled Piezoelectric Ultrasonic Vibration System

XU Long, Li Xuesong, YAO Lei, GONG Tao, LIANG Zhaofeng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了实现单个压电超声振动系统的多维超声辐射、有效增大系统的超声辐射面积,本文提出了一种新型纵弯正交耦合压电超声振动系统。它由纵向正交复合振动夹心式压电超声换能器、纵向振动圆锥形变幅杆和弯曲振动金属圆盘组成。基于耦合振动理论和力电类比原理建立了振动系统的机电等效电路模型,推导了其共振、反共振频率方程。通过等效电路法、有限元仿真以及实验测试对振动系统的纵弯耦合振动特性进行了研究,研究结果表明该振动系统可有效实现二维四向超声辐射,为该类新型超声振动系统的工程设计提供了理论基础。研究成果有望在超声凝聚、超声除雾等领域获得广泛应用。
    To address the limitations of conventional one-dimensional longitudinal vibration transducers in terms of single-directional acoustic radiation and limited radiation area, this study proposes a novel longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system(The vibration schematic diagram of the vibration system is shown in Fig.16.). By synergistically integrating the orthogonal longitudinal vibration of a sandwich-type piezoelectric transducer, displacement amplification via conical horns, and flexural vibration of metal disks, the system achieves two-dimensional four-directional large-area ultrasonic radiation.
    A combination of theoretical modeling, finite element simulation, and experimental validation was employed to investigate the system's dynamic characteristics. First, an electromechanical equivalent circuit model was established based on coupled vibration theory and electro-mechanical analogy principles, from which resonance/anti-resonance frequency equations were derived. Subsequently, finite element simulations using COMSOL Multiphysics were conducted to analyze impedance responses, vibration modes, and acoustic radiation characteristics in air. Finally, prototype fabrication and performance verification were performed through impedance analyzer measurements, laser vibrometry, and ultrasonic de-misting experiments.
    Theoretical predictions of anti-phase (22,871 Hz) and in-phase (23,016 Hz) resonance frequencies showed relative errors below 3.7% compared to experimental results (22,086 Hz and 22,196 Hz). Finite element simulations combined with experimental validation confirmed the excitation mechanism of 5th-order flexural vibration in the disks. Acoustic directivity patterns revealed a multi-beam radiation pattern with coexisting main lobes and side lobes(The directional patterns under anti-phase and in-phase vibration modes is shown in Fig.17.), while in-phase vibration mode demonstrated higher ultrasonic radiation intensity in the near-field region. Furthermore, under 200 W input power, the system reduced smoke concentration within 70 seconds, demonstrating its feasibility for gas treatment applications.
    By leveraging the synergistic effect of orthogonal longitudinal coupling and flexural vibration, this design overcomes the limitations of traditional transducers and provides theoretical and technical support for high-power multi-directional acoustic radiation. The research outcomes offer promising solutions for applications in ultrasonic dust removal, defoaming, and other gas-phase processing fields.
  • [1]

    Gallego-Juárez J A 2010Phys. Procedia 3 35

    [2]

    Ensminger D, Bond L J 2024Ultrasonics: fundamentals, technologies, and applications (London: CRC Press) pp1-22

    [3]

    Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016Mater. Process. Fundam. 1 125

    [4]

    Cheng J, Li X, Yang J 2021The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1-30(in Chinese) [程建春, 李晓东, 杨军2021声学学科现状以及未来发展趋势(北京: 科学出版社)第1-30页]

    [5]

    Wang S, Lin S 2019Acta Phys. Sin. 68 24303(in Chinese) [王莎, 林书玉2019物理学报68 24303]

    [6]

    Fu Z, Xian X, Lin S, Wang C, Hu W, Li G 2012ULTRASONICS 52 578

    [7]

    Liang Z, Mo X, Zhou G 2017Acta Acust. 42 7

    [8]

    Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010Phys. Procedia 3 135

    [9]

    Liang Z, Zhou G, Mo X 2009Piezoelectr. Acoustoopt. 31 760(in Chinese) [梁召峰, 周光平, 莫喜平2009压电与声光31 760]

    [10]

    He X, Zhang H 2016Sci. Sin.: Phys. Mech. Astron. 3 17(in Chinese) [贺西平, 张海岛2016中国科学: 物理学, 力学, 天文学3 17]

    [11]

    Xu L, Chang Y, Guo L, Wang Y, Xu F 2016Acta Acust. 41 105(in Chinese) [许龙, 常燕, 郭林伟, 王月兵, 徐方迁2016声学学报41 105]

    [12]

    Xu J, Lin S 2012Acta Acust. 37 408(in Chinese) [许龙, 林书玉2012声学学报37 408]

    [13]

    Xu J, Lin S, Ma Y, Tang Y 2017SENSORS-BASEL 17 2850

    [14]

    Liang Z, Mo X, Zhou G 2011Acta Acust. 36 369(in Chinese) [梁召峰, 莫喜平, 周光平2011声学学报36 369]

    [15]

    K. Itoh, E. Mori 1972J. Acoust. Soc. Jpn. 28 127

    [16]

    K. Itoh, E. Mori 1973J. Acoust. Soc. Jpn. 29 28

    [17]

    Xu L, Qiu X, Zhou J, Li F, Zhang H, Wang Y 2019Smart Mater. Struct. 28 025017

    [18]

    Du Y, Xu L, Zhou G 2021Sci. Sin.: Phys. Mech. Astron. 51 10(in Chinese) [杜耀东, 许龙, 周光平2021中国科学: 物理学, 力学, 天文学51 10]

    [19]

    Li F, Liu S, Xu L, Zhang H, Zeng X, Chen Z 2023Sci. Sin.: Phys. Mech. Astron. 53 194(in Chinese) [李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江2023中国科学: 物理学, 力学, 天文学53 194]

    [20]

    Xu L, Zhou J, Chang Y, Li F, Li W 2018Acta Acust. 43 786(in Chinese) [许龙, 周锦程, 常燕, 李凤鸣, 李伟东2018声学学报43 786]

    [21]

    Khmelev V N, Shalunov A V, Nesterov V A 2021ULTRASONICS 114 106413

    [22]

    Sang Y, Lan Y, Ding Y 2016Acta Phys. Sin. 65 1(in Chinese) [桑永杰, 蓝宇, 丁玥文2016物理学报65 1]

    [23]

    Liu S, Xu L, Zhang Z, Chen Z, Shen J 2014Acta Acust. 39 104(in Chinese) [刘世清, 许龙, 张志良, 陈赵江, 沈建国2014声学学报39 104]

    [24]

    Martin G E 1964J. Acoust. Soc. Am. 36 1496

    [25]

    Kalthoff J F, Winkler S 1988Impact Load. Dyn. Behav. Mater. 1 185

    [26]

    Pan R, Mo X, Chai Y, Zhang X,Tian Z 2024Acta Phys. Sin. 73 194301(in Chinese) [潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤2024物理学报73 194301]

    [27]

    Chen C, Dong Y, Wang S, Hu L, Lin S 2022J. Acoust. Soc. Am. 151 2712

    [28]

    Zhao F, Feng D, Guo D, Fang Y 2002 Acta Acust. 27 554(in Chinese) [赵福令, 冯冬菊, 郭东明, 方亚英2002声学学报27 554]

    [29]

    Zhang X, Liang B 2018Appl. Acoust. 129 284

  • [1] 林基艳, 李耀, 陈诚, 刘卫东, 林书玉, 郭林伟, 徐洁. 表面与缺陷调控型大功率压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250047
    [2] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [3] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, doi: 10.7498/aps.73.20240006
    [4] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控. 物理学报, doi: 10.7498/aps.73.20241199
    [5] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, doi: 10.7498/aps.73.20231251
    [6] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, doi: 10.7498/aps.70.20210161
    [7] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, doi: 10.7498/aps.70.20201352
    [8] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, doi: 10.7498/aps.68.20190260
    [9] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, doi: 10.7498/aps.67.20172080
    [10] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究. 物理学报, doi: 10.7498/aps.65.036301
    [11] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, doi: 10.7498/aps.64.110501
    [12] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, doi: 10.7498/aps.62.034301
    [13] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, doi: 10.7498/aps.61.178401
    [14] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, doi: 10.7498/aps.59.2137
    [15] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, doi: 10.7498/aps.55.403
    [16] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, doi: 10.7498/aps.54.4285
    [17] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, doi: 10.7498/aps.54.1361
    [18] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, doi: 10.7498/aps.49.1696
    [19] 谢 尊, 安 忠, 李有成. 聚噻吩中双电子极化子附近的二维局域振动模. 物理学报, doi: 10.7498/aps.48.1938
    [20] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, doi: 10.7498/aps.41.87
计量
  • 文章访问数:  70
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-27

/

返回文章
返回