搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纵弯正交耦合压电超声振动系统的设计及振动性能

许龙 李雪松 姚磊 龚涛 梁召峰

引用本文:
Citation:

纵弯正交耦合压电超声振动系统的设计及振动性能

许龙, 李雪松, 姚磊, 龚涛, 梁召峰

Design and vibration performance study of longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system

XU Long, LI Xuesong, YAO Lei, GONG Tao, LIANG Zhaofeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为了实现单个压电超声振动系统的多维超声辐射、有效增大系统的超声辐射面积, 本文提出了一种新型纵弯正交耦合压电超声振动系统. 其由纵向正交复合振动夹心式压电超声换能器、纵向振动圆锥形变幅杆和弯曲振动金属圆盘组成. 基于耦合振动理论和力电类比原理建立了振动系统的机电等效电路模型, 推导了其共振、反共振频率方程. 通过等效电路法、有限元仿真以及实验测试对振动系统的纵弯耦合振动特性进行研究, 结果表明该振动系统可有效实现二维四向超声辐射, 为该类新型超声振动系统的工程设计提供了理论基础. 本文成果有望在超声凝聚、超声除雾等领域获得广泛应用.
    To address the limitations of traditional one-dimensional longitudinal vibration transducers in terms of single-directional acoustic radiation and limited radiation area, this study proposes a novel longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system (The vibration schematic diagram of the vibration system is shown in Fig.(a)). By synergistically integrating the orthogonal longitudinal vibration of a sandwich-type piezoelectric transducer, displacement amplification via conical horns, and flexural vibration of metal disks, the system achieves two-dimensional four-directional large-area ultrasonic radiation.A combination of theoretical modeling, finite element simulation, and experimental validation is adopted to investigate the dynamic characteristics the system. First, an electromechanical equivalent circuit model is established based on coupled vibration theory and electro-mechanical analogy principles, from which resonance frequency equation and anti-resonance frequency equation are both derived. Subsequently, finite element simulations are conducted using COMSOL multiphysics to analyze the impedance responses, vibration modes, and acoustic radiation characteristics in air. Finally, prototype fabrication and performance verification are performed through impedance-analyzer measurements, laser vibrometry, and ultrasonic de-misting experiments.Compared with experimental results (22086 Hz and 22196 Hz), the theoretical predictions of anti-phase (22871 Hz) and in-phase (23016 Hz) resonance frequencies show relative errors below 3.7%. Finite element simulations combined with experimental validation confirm the excitation mechanism of 5th-order flexural vibration in the disks. Acoustic directivity patterns reveal a multi-beam radiation pattern with coexistence of main lobes and side lobes (The directional patterns under anti-phase and in-phase vibration modes is shown in Fig.(b)), while in-phase vibration mode demonstrates higher ultrasonic radiation intensity in the near-field region. Furthermore, under 200-W input power, the system reduces smoke concentration within 70 s, demonstrating its feasibility for gas treatment applications.By leveraging the synergistic effect of orthogonal longitudinal coupling and flexural vibration, this design overcomes the limitations of traditional transducers and provides theoretical and technical support for high-power multi-directional acoustic radiation. The research outcomes provide the promising solutions for applications in ultrasonic smoke removal, ultrasonic dust removal, and other gas-phase processing fields.
  • 图 1  纵弯正交耦合压电超声振动系统的结构(a)以及振动示意图(b)

    Fig. 1.  Schematic diagrams of the structure (a) and vibration (b) of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 2  纵弯正交耦合压电超声振动系统整体机电等效电路

    Fig. 2.  Integrated electromechanical equivalent circuit of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 3  纵弯正交耦合压电超声振动系统简化等效电路

    Fig. 3.  Simplified equivalent circuit of the longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system.

    图 4  振动系统谐响应曲线 (a)等效电路法测得结果; (b)有限元法测得结果

    Fig. 4.  Harmonic response curves of the vibration system: (a) Results obtained by the equivalent circuit method; (b) results obtained by the finite element method.

    图 5  振动系统的耦合共振模态 (a)反相共振模态; (b)同相共振模态

    Fig. 5.  Coupled resonance modes of the vibration system: (a) Anti-phase resonance mode; (b) in-phase resonance mode.

    图 6  振动系统在不同振动模式下的声压分布云图 (a)反相振动; (b) 同相振动

    Fig. 6.  Sound pressure distribution contour maps of the vibration system under: (a) Anti-phase vibration; (b) in-phase vibration.

    图 7  反相以及同相振动模式下的指向性图

    Fig. 7.  Directional patterns under anti-phase and in-phase vibration modes.

    图 8  轴向声压随距离的变化 (a)反相振动模式; (b)同相振动模式

    Fig. 8.  Variation of axial sound pressure with distance: (a) Anti-phase vibration mode; (b) in-phase vibration mode.

    图 9  实验样品

    Fig. 9.  Experimental sample.

    图 10  实验法测得振动系统谐响应曲线

    Fig. 10.  Harmonic response curve of the vibration system measured by the experimental method.

    图 11  有限元仿真计算所得XY轴向输出圆盘的纵向振动位移分布关系 (a)反相位移振幅; (b)同相位移振幅

    Fig. 11.  Longitudinal vibration displacement distribution relationship of the output disks along the X and Y axes obtained from finite element simulation calculations: (a) Anti-phase displacement amplitude; (b) in-phase displacement amplitude.

    图 13  实验法测得XY轴向输出圆盘的纵向振动位移分布关系 (a)反相位移振幅; (b)同相位移振幅

    Fig. 13.  Longitudinal vibration displacement distribution relationship of the output disks along the X and Y axes measured by the experimental method: (a) Anti-phase displacement amplitude; (b) in-phase displacement amplitude.

    图 12  LV-S01激光测振仪

    Fig. 12.  LV-S01 laser vibrometer.

    图 14  超声除雾实验装置

    Fig. 14.  Experimental setup for ultrasonic de-misting.

    图 15  超声除雾实验结果图 (a)未开启超声烟雾变化; (b)开启超声后的烟雾变化

    Fig. 15.  Results of the ultrasonic de-misting experiment: (a) Smoke variation without ultrasonic activation; (b) smoke variation after ultrasonic activation.

    表 1  反相和同相二维正交纵弯耦合振动共振频率及相对误差

    Table 1.  Resonance frequencies and relative errors of in-phase and out-of-phase two-dimensional orthogonal longitudinal-bending coupled vibrations.

    共振频率/Hz 误差/%
    ${f_{{\text{M}} - }}$ ${f_{{\text{M + }}}}$ ${f_{{\text{C}} - }}$ ${f_{{\text{C + }}}}$ ${f_{{\text{E}} - }}$ ${f_{{\text{E + }}}}$ ${\Delta _{{\text{ME}} - }}$ ${\Delta _{{\text{ME + }}}}$ ${\Delta _{{\text{CE}} - }}$ ${\Delta _{{\text{CE + }}}}$
    22871 23016 22351 22650 22086 22196 3.6 3.7 1.2 2.0
    下载: 导出CSV
  • [1]

    Gallego-Juárez J A 2010 Phys. Procedia 3 35

    [2]

    Ensminger D, Bond L J 2024 Ultrasonics: Fundamentals, Technologies, and Applications (London: CRC Press) pp1–22

    [3]

    Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016 Mater. Process. Fundam. 1 125

    [4]

    程建春, 李晓东, 杨军 2021 声学学科现状以及未来发展趋势(北京: 科学出版社) 第1—30页

    Cheng J C, Li X D, Yang J 2021 The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1–30

    [5]

    王莎, 林书玉 2019 物理学报 68 024303Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303Google Scholar

    [6]

    Fu Z Q, Xian X J, Lin S Y, Wang C H, Hu W X, Li G Z 2012 Ultrasonics 52 578Google Scholar

    [7]

    Liang Z F, Mo X P, Zhou G P 2017 Acta Acust. 42 7

    [8]

    Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010 Phys. Procedia 3 135Google Scholar

    [9]

    梁召峰, 周光平, 莫喜平 2009 压电与声光 31 760Google Scholar

    Liang Z F, Zhou G P, Mo X P 2009 Piezoelectr. Acoustoopt. 31 760Google Scholar

    [10]

    贺西平, 张海岛 2016 中国科学: 物理学, 力学, 天文学 3 17

    He X P, Zhang H D 2016 Sci. Sin. Phys. Mech. Astron. 3 17

    [11]

    许龙, 常燕, 郭林伟, 王月兵, 徐方迁 2016 声学学报 41 105

    Xu L, Chang Y, Guo L W, Wang Y B, Xu F Q 2016 Acta Acust. 41 105

    [12]

    许龙, 林书玉 2012 声学学报 37 408

    Xu J, Lin S Y 2012 Acta Acust. 37 408

    [13]

    Xu J, Lin S Y, Ma Y, Tang Y F 2017 Sensors-Basel 17 2850Google Scholar

    [14]

    梁召峰, 莫喜平, 周光平 2011 声学学报 36 369

    Liang Z F, Mo X P, Zhou G P 2011 Acta Acust. 36 369

    [15]

    Itoh K, Mori E 1972 J. Acoust. Soc. Jpn. 28 127

    [16]

    Itoh K, Mori E 1973 J. Acoust. Soc. Jpn. 29 28

    [17]

    Xu L, Qiu X J, Zhou J C, Li F M, Zhang H D, Wang Y B 2019 Smart Mater. Struct. 28 025017Google Scholar

    [18]

    杜耀东, 许龙, 周光平 2021 中国科学: 物理学, 力学, 天文学 51 10

    Du Y D, Xu L, Zhou G P 2021 Sci. Sin. Phys. Mech. Astron. 51 10

    [19]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学, 力学, 天文学 53 194

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 194

    [20]

    许龙, 周锦程, 常燕, 李凤鸣, 李伟东 2018 声学学报 43 786

    Xu L, Zhou J C, Chang Y, Li F M, Li W D 2018 Acta Acust. 43 786

    [21]

    Khmelev V N, Shalunov A V, Nesterov V A 2021 ULTRASONICS 114 106413Google Scholar

    [22]

    桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 1Google Scholar

    Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 1Google Scholar

    [23]

    刘世清, 许龙, 张志良, 陈赵江, 沈建国 2014 声学学报 39 104

    Liu S Q, Xu L, Zhang Z L, Chen Z J, Shen J G 2014 Acta Acust. 39 104

    [24]

    Martin G E 1964 J. Acoust. Soc. Am. 36 1496Google Scholar

    [25]

    Kalthoff J F, Winkler S 1988 Impact Load. Dyn. Behav. Mater. 1 185

    [26]

    潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤 2024 物理学报 73 194301

    Pan R, Mo X P, Chai Y, Zhang X Z, Tian Z F 2024 Acta Phys. Sin. 73 194301

    [27]

    Chen C, Dong Y L, Wang S, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 151 2712Google Scholar

    [28]

    赵福令, 冯冬菊, 郭东明, 方亚英 2002 声学学报 27 554Google Scholar

    Zhao F L, Feng D J, Guo D M, Fang Y Y 2002 Acta Acust. 27 554Google Scholar

    [29]

    Zhang X L, Liang B 2018 Appl. Acoust. 129 284Google Scholar

  • [1] 林基艳, 李耀, 陈诚, 刘卫东, 林书玉, 郭林伟, 徐洁. 表面与缺陷调控型大功率压电超声换能器. 物理学报, doi: 10.7498/aps.74.20250047
    [2] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [3] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, doi: 10.7498/aps.73.20240006
    [4] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控. 物理学报, doi: 10.7498/aps.73.20241199
    [5] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, doi: 10.7498/aps.73.20231251
    [6] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, doi: 10.7498/aps.70.20210161
    [7] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, doi: 10.7498/aps.70.20201352
    [8] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, doi: 10.7498/aps.68.20190260
    [9] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, doi: 10.7498/aps.67.20172080
    [10] 牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘. 二维有摩擦颗粒体系振动态密度与玻色峰的研究. 物理学报, doi: 10.7498/aps.65.036301
    [11] 孙润智, 汪治中, 汪茂胜, 张季谦. 二维格子神经元网络的振动共振和非线性振动共振. 物理学报, doi: 10.7498/aps.64.110501
    [12] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, doi: 10.7498/aps.62.034301
    [13] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, doi: 10.7498/aps.61.178401
    [14] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, doi: 10.7498/aps.59.2137
    [15] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, doi: 10.7498/aps.55.403
    [16] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, doi: 10.7498/aps.54.4285
    [17] 李洪奇. 介观压电石英晶体等效电路的量子化. 物理学报, doi: 10.7498/aps.54.1361
    [18] 王均宏. 脉冲电压电流沿偶极天线传播过程的等效电路法分析. 物理学报, doi: 10.7498/aps.49.1696
    [19] 谢 尊, 安 忠, 李有成. 聚噻吩中双电子极化子附近的二维局域振动模. 物理学报, doi: 10.7498/aps.48.1938
    [20] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, doi: 10.7498/aps.41.87
计量
  • 文章访问数:  253
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-07
  • 修回日期:  2025-04-21
  • 上网日期:  2025-04-27

/

返回文章
返回