-
为了实现单个压电超声振动系统的多维超声辐射、有效增大系统的超声辐射面积, 本文提出了一种新型纵弯正交耦合压电超声振动系统. 其由纵向正交复合振动夹心式压电超声换能器、纵向振动圆锥形变幅杆和弯曲振动金属圆盘组成. 基于耦合振动理论和力电类比原理建立了振动系统的机电等效电路模型, 推导了其共振、反共振频率方程. 通过等效电路法、有限元仿真以及实验测试对振动系统的纵弯耦合振动特性进行研究, 结果表明该振动系统可有效实现二维四向超声辐射, 为该类新型超声振动系统的工程设计提供了理论基础. 本文成果有望在超声凝聚、超声除雾等领域获得广泛应用.
To address the limitations of traditional one-dimensional longitudinal vibration transducers in terms of single-directional acoustic radiation and limited radiation area, this study proposes a novel longitudinal-bending orthogonal coupled piezoelectric ultrasonic vibration system (The vibration schematic diagram of the vibration system is shown in Fig.(a)). By synergistically integrating the orthogonal longitudinal vibration of a sandwich-type piezoelectric transducer, displacement amplification via conical horns, and flexural vibration of metal disks, the system achieves two-dimensional four-directional large-area ultrasonic radiation. A combination of theoretical modeling, finite element simulation, and experimental validation is adopted to investigate the dynamic characteristics the system. First, an electromechanical equivalent circuit model is established based on coupled vibration theory and electro-mechanical analogy principles, from which resonance frequency equation and anti-resonance frequency equation are both derived. Subsequently, finite element simulations are conducted using COMSOL multiphysics to analyze the impedance responses, vibration modes, and acoustic radiation characteristics in air. Finally, prototype fabrication and performance verification are performed through impedance-analyzer measurements, laser vibrometry, and ultrasonic de-misting experiments. Compared with experimental results (22086 Hz and 22196 Hz), the theoretical predictions of anti-phase (22871 Hz) and in-phase (23016 Hz) resonance frequencies show relative errors below 3.7%. Finite element simulations combined with experimental validation confirm the excitation mechanism of 5th-order flexural vibration in the disks. Acoustic directivity patterns reveal a multi-beam radiation pattern with coexistence of main lobes and side lobes (The directional patterns under anti-phase and in-phase vibration modes is shown in Fig.(b)), while in-phase vibration mode demonstrates higher ultrasonic radiation intensity in the near-field region. Furthermore, under 200-W input power, the system reduces smoke concentration within 70 s, demonstrating its feasibility for gas treatment applications. By leveraging the synergistic effect of orthogonal longitudinal coupling and flexural vibration, this design overcomes the limitations of traditional transducers and provides theoretical and technical support for high-power multi-directional acoustic radiation. The research outcomes provide the promising solutions for applications in ultrasonic smoke removal, ultrasonic dust removal, and other gas-phase processing fields. -
Keywords:
- piezoelectric ultrasonic transducer /
- 2D coupled vibration /
- electro-mechanical equivalent circuit /
- vibration modal
-
表 1 反相和同相二维正交纵弯耦合振动共振频率及相对误差
Table 1. Resonance frequencies and relative errors of in-phase and out-of-phase two-dimensional orthogonal longitudinal-bending coupled vibrations.
共振频率/Hz 误差/% ${f_{{\text{M}} - }}$ ${f_{{\text{M + }}}}$ ${f_{{\text{C}} - }}$ ${f_{{\text{C + }}}}$ ${f_{{\text{E}} - }}$ ${f_{{\text{E + }}}}$ ${\Delta _{{\text{ME}} - }}$ ${\Delta _{{\text{ME + }}}}$ ${\Delta _{{\text{CE}} - }}$ ${\Delta _{{\text{CE + }}}}$ 22871 23016 22351 22650 22086 22196 3.6 3.7 1.2 2.0 -
[1] Gallego-Juárez J A 2010 Phys. Procedia 3 35
[2] Ensminger D, Bond L J 2024 Ultrasonics: Fundamentals, Technologies, and Applications (London: CRC Press) pp1–22
[3] Nie G, Kang J, Hu Y, You R, Ma J, Hu Y, Huang T 2016 Mater. Process. Fundam. 1 125
[4] 程建春, 李晓东, 杨军 2021 声学学科现状以及未来发展趋势(北京: 科学出版社) 第1—30页
Cheng J C, Li X D, Yang J 2021 The Current State and Future Development Trends of the Acoustics Discipline (Beijing: Science Press) pp1–30
[5] 王莎, 林书玉 2019 物理学报 68 024303
Google Scholar
Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303
Google Scholar
[6] Fu Z Q, Xian X J, Lin S Y, Wang C H, Hu W X, Li G Z 2012 Ultrasonics 52 578
Google Scholar
[7] Liang Z F, Mo X P, Zhou G P 2017 Acta Acust. 42 7
[8] Rodríguez G, Riera E, Gallego-Juárez J A, Gallego-Juárez V M A, Pinto A, Martínez I, Blanco A 2010 Phys. Procedia 3 135
Google Scholar
[9] 梁召峰, 周光平, 莫喜平 2009 压电与声光 31 760
Google Scholar
Liang Z F, Zhou G P, Mo X P 2009 Piezoelectr. Acoustoopt. 31 760
Google Scholar
[10] 贺西平, 张海岛 2016 中国科学: 物理学, 力学, 天文学 3 17
He X P, Zhang H D 2016 Sci. Sin. Phys. Mech. Astron. 3 17
[11] 许龙, 常燕, 郭林伟, 王月兵, 徐方迁 2016 声学学报 41 105
Xu L, Chang Y, Guo L W, Wang Y B, Xu F Q 2016 Acta Acust. 41 105
[12] 许龙, 林书玉 2012 声学学报 37 408
Xu J, Lin S Y 2012 Acta Acust. 37 408
[13] Xu J, Lin S Y, Ma Y, Tang Y F 2017 Sensors-Basel 17 2850
Google Scholar
[14] 梁召峰, 莫喜平, 周光平 2011 声学学报 36 369
Liang Z F, Mo X P, Zhou G P 2011 Acta Acust. 36 369
[15] Itoh K, Mori E 1972 J. Acoust. Soc. Jpn. 28 127
[16] Itoh K, Mori E 1973 J. Acoust. Soc. Jpn. 29 28
[17] Xu L, Qiu X J, Zhou J C, Li F M, Zhang H D, Wang Y B 2019 Smart Mater. Struct. 28 025017
Google Scholar
[18] 杜耀东, 许龙, 周光平 2021 中国科学: 物理学, 力学, 天文学 51 10
Du Y D, Xu L, Zhou G P 2021 Sci. Sin. Phys. Mech. Astron. 51 10
[19] 李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学, 力学, 天文学 53 194
Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 194
[20] 许龙, 周锦程, 常燕, 李凤鸣, 李伟东 2018 声学学报 43 786
Xu L, Zhou J C, Chang Y, Li F M, Li W D 2018 Acta Acust. 43 786
[21] Khmelev V N, Shalunov A V, Nesterov V A 2021 ULTRASONICS 114 106413
Google Scholar
[22] 桑永杰, 蓝宇, 丁玥文 2016 物理学报 65 1
Google Scholar
Sang Y J, Lan Y, Ding Y W 2016 Acta Phys. Sin. 65 1
Google Scholar
[23] 刘世清, 许龙, 张志良, 陈赵江, 沈建国 2014 声学学报 39 104
Liu S Q, Xu L, Zhang Z L, Chen Z J, Shen J G 2014 Acta Acust. 39 104
[24] Martin G E 1964 J. Acoust. Soc. Am. 36 1496
Google Scholar
[25] Kalthoff J F, Winkler S 1988 Impact Load. Dyn. Behav. Mater. 1 185
[26] 潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤 2024 物理学报 73 194301
Pan R, Mo X P, Chai Y, Zhang X Z, Tian Z F 2024 Acta Phys. Sin. 73 194301
[27] Chen C, Dong Y L, Wang S, Hu L Q, Lin S Y 2022 J. Acoust. Soc. Am. 151 2712
Google Scholar
[28] 赵福令, 冯冬菊, 郭东明, 方亚英 2002 声学学报 27 554
Google Scholar
Zhao F L, Feng D J, Guo D M, Fang Y Y 2002 Acta Acust. 27 554
Google Scholar
[29] Zhang X L, Liang B 2018 Appl. Acoust. 129 284
Google Scholar
计量
- 文章访问数: 253
- PDF下载量: 12
- 被引次数: 0