搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于X射线CT成像技术振动条件下的“六足”凹体颗粒堆积结构实验

罗茹丹 曾志坤 葛转 姜永伦 王宇杰

引用本文:
Citation:

基于X射线CT成像技术振动条件下的“六足”凹体颗粒堆积结构实验

罗茹丹, 曾志坤, 葛转, 姜永伦, 王宇杰

X-ray tomography based experimental study on packing structure of “hexapod” concave particles under external tapping

LUO Rudan, ZENG Zhikun, GE Zhuan, JIANG Yonglun, WANG Yujie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 颗粒物质广泛存在于自然界与工业生产当中, 研究颗粒堆积结构对理解其物理性质具有重要意义. 近年来, 颗粒形状对堆积结构的影响备受关注. 非球形颗粒因形状复杂, 易相互嵌合形成稳定结构, 从而具有显著的几何内聚力, 对颗粒堆积的稳定性和孔隙率等特性产生重要影响. 为探索凹形颗粒体系的微观堆积构型, 本研究使用由3个相互正交球棍组成的“六足体”形状颗粒, 基于X射线断层扫描技术研究其在外部振动驱动下致密化过程中堆积结构的演化. 结果显示, “六足体”颗粒堆积体积分数低于硬球体系. 同时, 与硬球体系结果类似, 其在不同振动加速度下的致密化曲线可用Kohlrausch-Williams-Watt函数拟合, 且稳态堆积的体积分数与平均接触数随振动强度的减小而增大. 针对接触点统计分析的结果表明, “六足体”颗粒压实过程由接触形式调整主导, 使颗粒相互锁定程度增加. 本研究揭示了非球形颗粒堆积在压实过程中的结构演化特征, 为理解凹形颗粒堆积的独特力学与动力学性质提供了重要的实验支持.
    Granular materials are ubiquitous in nature and industrial production. Investigating the structure of packing is crucial for understanding the physical properties of granular materials. Owing to their symmetry and simple geometry, spherical particles have long served as an ideal model for studying granular packing, yielding numerous research outcomes.In recent years, the influence of particle shape on packing structures has drawn considerable attention. Non-spherical particles, characterized by complex shapes, tend to interlock and form stable structures. Their significant geometric cohesion notably affects the stability and porosity of granular packing.To investigate the structural evolution and compaction mechanisms of three-dimensional concave particles (hexapod-shaped) under external tapping, focusing on the role of geometric cohesion in enhancing mechanical stability, we employ hexapod-shaped particles that are composed of three mutually orthogonal spherocylinders in this study. The granular system subjected to consecutive tapping can reach a stationary state. In the densifying process of the system, packing structures with different volume fractions will be formed. Meanwhile, by combining with X-ray tomography, we can obtain the microstructure.The findings reveal that the volume fraction of “hexapod” particle packing is significantly lower than that of hard-sphere systems. The compaction curves of “hexapod” particles across varying tapping intensities are accurately described by the Kohlrausch-Williams-Watt (KWW) law, which is consistent with hard-sphere system, suggesting a relaxation process governed by heterogeneous modes. Furthermore, both the volume fraction of the steady-state granular packing and the average contact number exhibit an inverse relationship with tapping intensity, increasing as the intensity decreases. A detailed statistical analysis of contact points indicates that the compaction process of “hexapod” particles is predominantly influenced by two factors: the augmentation in the number of neighboring contacting particles and the modification of contact forms. These factors collectively enhance the degree of interlocking among hexapods within the system. Specifically, the compaction process is primarily propelled by the escalation in neighboring contacts and the refinement of contact types, particularly the increase in cylinder-cylinder (cc) contact. This rise in cc contact significantly enhances mechanical stability through strengthening geometric interlocking.This study reveals the structural evolution characteristics of non-spherical particles in the compaction process and provide important experimental support for understanding the unique mechanical and dynamic properties of concave particle packing. This research not only enriches the experimental data of granular packing structures but also offers a new perspective for exploring the universal laws of packing for particles of different shapes. This study is to lay a more solid foundation for the theoretical research and industrial applications of granular materials, thereby promoting technological progress and innovation in related fields.
  • 图 1  (a) “六足体”颗粒示意图, 其中紫色部分为圆柱体, 粉色部分为半球帽; (b)实验装置图; (c) CT拍摄示意图; (d)“六足体”颗粒堆积的 CT 切片图

    Fig. 1.  (a) Schematic diagram of “hexapod” particles (the purple part is a cylinder, the pink part is a hemispherical cap); (b) diagram of the experimental setup; (c) schematic diagram of CT scan; (d) CT slice of “hexapod” particle packing.

    图 2  (a)不同振动加速度$\varGamma $条件下, 颗粒堆积的压实曲线及KWW拟合曲线(实线); (b)弛豫时间$\tau $与振动加速度$\varGamma $的关系图; (c)稳态体积分数$\varPhi {\text{f}}$与振动加速度$\varGamma $的关系图

    Fig. 2.  (a) Compaction curves of various tapping intensities $\varGamma $and the corresponding KWW fits (lines); (b) relaxation time $\tau $ as a function of tapping intensities $\varGamma $; (c) steady-state packing fraction $\varPhi {\text{f}}$ as a function of tapping intensities $\varGamma $.

    图 3  (a)近邻“六足体”颗粒臂之间的表面间距$\Delta r{\text{arm}}$的概率分布及高斯拟合曲线(实线); (b)接触数$Z$与接触阈值$\delta {\text{th}}$的函数关系图

    Fig. 3.  (a) Probability distribution function (PDF) of the surface distance $\Delta r{\text{arm}}$ between the arms of neighboring hexapods and the Gaussian fitting curve (solid line); (b) the contact number $Z$ as a function of the contact threshold $\delta {\text{th}}$.

    图 4  (a)不同振动加速度$\varGamma $时, 接触数$Z$随振动次数$t$的变化曲线; (b)不同振动加速度$\varGamma $时, 接触数$Z$随体积分数$\varPhi $的变化曲线

    Fig. 4.  (a) The contact $Z$ number as a function of the tapping number $t$ under different tapping intensities $\varGamma $; (b) the contact number $Z$ as a function of the volume fraction $\varPhi $ under different tapping intensities $\varGamma $.

    图 5  (a)接触距离$d{\text{con}}$示意图. 图中白色实心圆表示颗粒中心, 绿色实心圆表示颗粒接触位置, 黑色实线表示过颗粒中心的颗粒臂轴线; (b)接触距离$d{\text{con}}$的概率分布图; (c)不同振动加速度$\varGamma $下, 平均接触距离$\left\langle {d{\text{con}}} \right\rangle $随振动次数$t$的变化曲线; (d)不同振动加速度$\varGamma $下, 平均接触距离$\left\langle {d{\text{con}}} \right\rangle $随体积分数$\varPhi $的变化曲线

    Fig. 5.  (a) Schematic diagram of the contact distance $d{\text{con}}$. The white solid circle represents the center of the particle, the green solid circle represents the contact position of the particles, and the black solid line represents the axis of the particle arm passing through the particle center; (b) probability distribution function (PDF) of the average contact distance $\left\langle {d{\text{con}}} \right\rangle $; (c) the contact distance $d{\text{con}}$ as a function of the tapping number $t$ under different tapping intensities $\varGamma $; (d) the average contact distance $\left\langle {d{\text{con}}} \right\rangle $ as a function of the packing fraction $\varPhi $ under different tapping intensities $\varGamma $.

    图 6  (a) 3种接触(cs接触、cc接触、ss接触)类型示意图. 紫色部分为圆柱体, 粉色部分为半球帽, 绿色实心圆表示接触点; (b)不同振动加速度$\varGamma $下, 3种接触类型所占比例随振动次数$t$的变化曲线; (c)不同振动加速度$\varGamma $下, 3种接触类型所占比例随稳态体积分数$\varPhi $的变化曲线

    Fig. 6.  (a) Schematic diagram of three contact types (cs contacts, cc contacts, ss contacts), the purple part is the cylinder, the pink part is the hemispherical cap, and the green solid circle represents the contact point; (b) ratios of three contact types as a function of the tapping number $t$ under different tapping intensities $\varGamma $; (c) ratios of three contact types as a function of the steady-state packing fraction $\varPhi $ under different tapping intensities $\varGamma $.

  • [1]

    Jaeger H M, Nagel S R 1992 Science 255 1523Google Scholar

    [2]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259Google Scholar

    [3]

    Nedderman R M 1992 Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press

    [4]

    Bernal J D, Mason J 1960 Nature 188 910Google Scholar

    [5]

    Scott G D 1960 Nature 188 908Google Scholar

    [6]

    Tang J J, Wen X H, Zhang Z, Wang Y J 2025 Phys. Rev. E 111 015420Google Scholar

    [7]

    Briscoe C, Song C, Wang P, Makse H A 2008 Phys. Rev. Lett. 101 188001Google Scholar

    [8]

    Onoda G Y, Liniger E G 1990 Phys. Rev. Lett. 64 2727Google Scholar

    [9]

    Edwards S F, Oakeshott R B S 1989 Physica A 157 1080Google Scholar

    [10]

    Zeng Z K, Zhang S Y, Zheng X, Xia C J, Kob W, Yuan Y, Wang Y J 2022 Phys. Rev. Lett. 129 228004Google Scholar

    [11]

    Baule A, Morone F, Herrmann H J, Makse H A 2018 Rev. Mod. Phys. 90 015006Google Scholar

    [12]

    Yuan Y, Xing Y, Zheng J, Li Z F, Yuan H F, Zhang S Y, Zeng Z K, Xia C J, Tong H, Kob W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 127 018002Google Scholar

    [13]

    Nowak E R, Knight J B, Ben-Naim E, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 1971

    [14]

    Xing Y, Yuan Y, Yuan H F, Zhang S Y, Zeng Z K, Zheng X, Xia C J, Wang Y J 2024 Nat. Phys. 20 646Google Scholar

    [15]

    Philippe P, Bideau D 2002 Europhys. Lett. 60 677Google Scholar

    [16]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002Google Scholar

    [17]

    Richard P, Nicodemi M, Delannay R, Ribière P, Bideau D 2005 Nat. Mater. 4 121Google Scholar

    [18]

    Schröter M, Goldman D I, Swinney H L 2005 Phys. Rev. E 71 030301

    [19]

    Pica Ciamarra M, Coniglio A, Nicodemi M 2006 Phys. Rev. Lett. 97 158001Google Scholar

    [20]

    Yuan Y, Zeng Z K, Xing Y, Yuan H F, Zhang S Y, Kob W, Wang Y J 2024 Nat. Commun. 15 3866Google Scholar

    [21]

    Wang W, Barés J, Renouf M, Azéma E 2024 arXiv: 2403.07555 [cond-mat. soft]

    [22]

    Conzelmann N A, Partl M N, Clemens F J, Müller C R, Poulikakos L D 2022 Powder Technol. 397 117019Google Scholar

    [23]

    McKeown N B, Budd P M 2010 Macromolecules 43 5163Google Scholar

    [24]

    Malinouskaya I, Mourzenko V, Thovert J-F, Adler P 2009 Phys. Rev. E 80 011304Google Scholar

    [25]

    Man W, Donev A, Stillinger F H, Sullivan M T, Russel W B, Heeger D, Inati S, Torquato S, Chaikin P M 2005 Phys. Rev. Lett. 94 198001Google Scholar

    [26]

    Tran T D, Nezamabadi S, Bayle J P, Amarsid L, Radjai F 2024 Soft Matter 20 3411Google Scholar

    [27]

    Aponte D, Barés J, Renouf M, Azéma E, Estrada N 2025 Granular Matter 27 27Google Scholar

    [28]

    Lu H W, Hou J H 2024 International Association for Shell and Spatial Structures (IASS) Zurich Switzerland, August 26-30

    [29]

    Xing Y, Qiu Y P, Wang Z, Ye J C, Li X T 2017 Chin. Phys. B 26 084503Google Scholar

    [30]

    Franklin S V 2014 Europhys. Lett. 106 58004Google Scholar

    [31]

    Murphy K A, Reiser N, Choksy D, Singer C E, Jaeger H M 2016 Granular Matter 18 26Google Scholar

    [32]

    Zhao Y C, Liu K, Zheng M, Barés J, Dierichs K, Menges A, Behringer R P 2016 Granular Matter. 18 24Google Scholar

    [33]

    Franklin S V 2012 Physics Today 65 70

    [34]

    Gravish N, I. Goldman D 2016 Fluids, Colloids and Soft Materials pp341-354

    [35]

    Zhao Y C, Barés J, Socolar J E S 2020 Phys. Rev. E 101 062903Google Scholar

    [36]

    Govender N, Wilke D N, Wu C Y, Khinast J, Pizette P, Xu W J 2018 Chem. Eng. Sci. 188 34Google Scholar

    [37]

    Roth L K, Jaeger H M 2016 Soft Matter 12 1107Google Scholar

    [38]

    Zhang S Y, Zeng Z K, Yuan H F, Li Z F, Wang Y J 2024 Commun. Phys. 7 202Google Scholar

    [39]

    Egres R G, Wagner N J 2005 J. Rheol. 49 719Google Scholar

    [40]

    Dierichs K, Menges A 2016 Granular Matter 18 25Google Scholar

    [41]

    Dierichs K, Menges A 2021 Bioinspir. Biomim. 16 065010Google Scholar

    [42]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409Google Scholar

    [43]

    Cao Y X, Li J D, Kou B Q, Xia C J, Li Z F, Chen R C, Xie H L, Xiao T Q, Kob W, Hong L, Zhang J, Wang Y J 2018 Nat. Commun. 9 2911Google Scholar

    [44]

    Aste T, Saadatfar M, Senden T J 2005 Phys. Rev. E 71 061302Google Scholar

  • [1] 刘泽林, 袁后非, 曾智坤, 姜永伦, 葛转, 王宇杰. 振动驱动下双分散硬球颗粒堆积的结构研究. 物理学报, doi: 10.7498/aps.74.20250232
    [2] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, doi: 10.7498/aps.67.20171441
    [3] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, doi: 10.7498/aps.64.197502
    [4] 司丽娜, 王晓力. 纳米沟槽表面黏着接触过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.234601
    [5] 王琛, 安红海, 王伟, 方智恒, 贾果, 孟祥富, 孙今人, 刘正坤, 付绍军, 乔秀梅, 郑无敌, 王世绩. 利用软X射线双频光栅剪切干涉技术诊断金等离子体. 物理学报, doi: 10.7498/aps.63.125210
    [6] 杨晓京, 方聪聪. 球形压头与单晶铝材料纳米接触过程的多尺度分析. 物理学报, doi: 10.7498/aps.62.180702
    [7] 张品, 梁艳梅, 常胜江, 范海伦. 基于能量最小化的肾脏计算断层扫描图像分割方法. 物理学报, doi: 10.7498/aps.62.208701
    [8] 段芳莉, 王光建, 仇和兵. 纳米接触过程中黏着规律的变化. 物理学报, doi: 10.7498/aps.61.046801
    [9] 管俊伟, 贺端威, 王海阔, 彭放, 许超, 王文丹, 王凯雪, 贺凯. 力学结构及末级压砧硬度对八面体压腔高压发生效率的影响. 物理学报, doi: 10.7498/aps.61.100701
    [10] 马天鹏, 胡立群, 陈开云. 通过软X射线信号研究芯部等离子体的结构. 物理学报, doi: 10.7498/aps.58.1110
    [11] 胡国琦, 涂洪恩, 厚美瑛. 二维颗粒气体在堆积过程中的能量耗散. 物理学报, doi: 10.7498/aps.58.341
    [12] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究. 物理学报, doi: 10.7498/aps.56.4713
    [13] 张 耘. 极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究. 物理学报, doi: 10.7498/aps.56.280
    [14] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.54.1665
    [15] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, doi: 10.7498/aps.54.2172
    [16] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, doi: 10.7498/aps.53.1251
    [17] 杨国洪, 张继彦, 张保汉, 周裕清, 李 军. 金激光等离子体X射线精细结构谱研究. 物理学报, doi: 10.7498/aps.49.2389
    [18] 罗远苏, 赵继良, 黄胜涛. 几种金属玻璃结构的X射线研究. 物理学报, doi: 10.7498/aps.31.1256
    [19] 李家璘, 陈良辰, 沈主同. 双级四压砧(四面体)静态超高压技术. 物理学报, doi: 10.7498/aps.24.301
    [20] 刘叔仪. 塑压接触平面上之长程滑动与短程滑动(等倾陡线规律). 物理学报, doi: 10.7498/aps.14.9
计量
  • 文章访问数:  265
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25
  • 修回日期:  2025-05-04
  • 上网日期:  2025-05-10

/

返回文章
返回