-
颗粒物质广泛存在于自然界与工业生产当中,研究颗粒堆积结构对理解其物理性质具有重要意义。近年来,颗粒形状对堆积结构的影响备受关注。非球形颗粒因形状复杂,易相互嵌合形成稳定结构,从而具有显著的几何内聚力,对颗粒堆积的稳定性和孔隙率等特性产生重要影响。为探索凹形颗粒体系的微观堆积构型,本研究使用由三个相互正交球棍组成的“六足体”形状颗粒,基于X射线断层扫描技术研究其在外部振动驱动下致密化过程中堆积结构的演化。结果显示,“六足体”颗粒堆积体积分数低于硬球体系。同时,与硬球体系结果类似,其在不同振动加速度下的致密化曲线可用KWW函数拟合,且稳态堆积的体积分数与平均接触数随振动强度的减小而增加。针对接触点统计分析的结果表明,“六足体”颗粒压实过程由接触形式调整主导,使颗粒相互锁定程度增加。本研究揭示的非球形颗粒堆积在压实过程中的结构演化特征,为理解凹形颗粒堆积的独特力学与动力学性质提供了重要的实验支持。
-
关键词:
- “六足”凹体颗粒堆积 /
- 压实过程 /
- 接触结构 /
- X射线断层扫描技术
Granular materials are ubiquitous in nature and industrial production. Investigating the structure of packing is crucial for understanding the physical properties of granular materials. Owing to their symmetry and simple geometry, spherical particles have long served as an ideal model for studying granular packing, yielding numerous research outcomes.
In recent years, the influence of particle shape on packing structures has drawn considerable attention. Non-spherical particles, characterized by complex shapes, tend to interlock and form stable structures. Their significant geometric cohesion notably affects the stability and porosity of granular packing.
To investigate the structural evolution and compaction mechanisms of three-dimensional concave particles (hexapod-shaped) under external tapping, focusing on the role of geometric cohesion in enhancing mechanical stability. We employed hexapod-shaped particles that are composed of three mutually orthogonal spherocylinders in this study. The granular system subject to consecutive tapping can reach a stationary state. During the densification process of the system, packing structures with different volume fractions will be formed. Meanwhile, by combining with X-ray tomography, we can obtain the microstructure.
The findings reveal that the volume fraction of “hexapod” particle packing is significantly lower compared to that of hard-sphere systems. Consistent with hard-sphere systems, the compaction curves of “hexapod” particles across varying tapping intensities are accurately described by the Kohlrausch–Williams–Watt (KWW) law, suggesting a relaxation process governed by heterogeneous modes. Furthermore, both the volume fraction of the steady-state granular packing and the average contact number exhibit an inverse relationship with tapping intensity, increasing as the intensity decreases. A detailed statistical analysis of contact points indicates that the compaction process of “hexapod” particles is predominantly influenced by two factors: the augmentation in the number of neighboring contacting particles and the modification of contact forms. These factors collectively enhance the degree of interlocking among hexapods within the system. Specifically, the compaction process is primarily propelled by the escalation in neighboring contacts and the refinement of contact types, particularly the increase in cylinder-cylinder (cc) contacts. This rise in cc contacts significantly bolsters mechanical stability through enhanced geometric interlocking.
This study reveals the structural evolution characteristics of non-spherical particles during the compaction process and provide important experimental support for understanding the unique mechanical and dynamic properties of concave particle packing. This research not only enrich the experimental data on granular packing structures but also offer a new perspective for exploring the universal laws of packing for particles of different shapes. Through this study, we aim to provide a more solid foundation for the theoretical research and industrial applications of granular materials, promoting technological progress and innovation in related fields.-
Keywords:
- Packing of "hexapod" concave particles /
- Compaction process /
- Contact structure /
- X-ray tomography technology
-
[1] Jaeger H M, Nagel S R 1992 Science 255 1523
[2] Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259
[3] Nedderman R M 1992Statics and Kinematics of Granular Materials (Cambridge: Cambridge University Press)
[4] Bernal J D, Mason J 1960 Nature 188 910
[5] Scott G D 1960 Nature 188 908
[6] Tang J J, Wen X H, Zhang Z, Wang Y J 2025 Phys. Rev. E 111 015420
[7] Briscoe C, Song C, Wang P, Makse H A 2008 Phys. Rev. Lett. 101 188001
[8] Onoda G Y, Liniger E G 1990 Phys. Rev. Lett. 64 2727
[9] Edwards S F, Oakeshott R B S 1989 Physica A 157 1080
[10] Zeng Z K, Zhang S Y, Zheng X, Xia C J, Kob W, Yuan Y, Wang Y J 2022 Phys. Rev. Lett. 129 228004
[11] Baule A, Morone F, Herrmann H J, Makse H A 2018 Rev. Mod. Phys. 90 015006
[12] Yuan Y, Xing Y, Zheng J, Li Z F, Yuan H F, Zhang S Y, Zeng Z K, Xia C J, Tong H, Kob W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 127 018002
[13] Nowak E R, Knight J B, Ben-Naim E, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 1971
[14] Xing Y, Yuan Y, Yuan H F, Zhang S Y, Zeng Z K, Zheng X, Xia C J, Wang Y J 2024 Nat. Phys. 20 646
[15] Philippe P, Bideau D 2002 Europhys. Lett. 60 677
[16] Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 126 048002
[17] Richard P, Nicodemi M, Delannay R, Ribière P, Bideau D 2005 Nat. Mater. 4 121
[18] Schröter M, Goldman D I, Swinney H L 2005 Phys. Rev. E 71 030301
[19] Pica Ciamarra M, Coniglio A, Nicodemi M 2006 Phys. Rev. Lett. 97 158001
[20] Yuan Y, Zeng Z K, Xing Y, Yuan H F, Zhang S Y, Kob W, Wang Y J 2024 Nat. Commun. 15 3866
[21] Wang W, Barés J, Renouf M, Azéma E 2024 arXiv:2403.07555[cond-mat.soft]
[22] Conzelmann N A, Partl M N, Clemens F J, Müller C R, Poulikakos L D 2022 Powder Technol. 397 117019
[23] McKeown N B, Budd P M 2010 Macromolecules 43 5163
[24] Malinouskaya I, Mourzenko V, Thovert J-F, Adler P 2009 Phys. Rev. E 80 011304
[25] Man W, Donev A, Stillinger F H, Sullivan M T, Russel W B, Heeger D, Inati S, Torquato S, Chaikin P M 2005 Phys. Rev. Lett. 94 198001
[26] Tran T D, Nezamabadi S, Bayle J P, Amarsid L, Radjai F 2024 Soft Matter 20 3411
[27] Aponte D, Barés J, Renouf M, Azéma E, Estrada N 2025 Granular Matter 27 27
[28] Lu H W, Hou J H 2024International Association for Shell and Spatial Structures (IASS) Zurich Switzerland, August 26-30
[29] Xing Y, Qiu Y P, Wang Z, Ye J C, Li X T 2017 Chin. Phys. B 26 084503
[30] Franklin S V 2014 Europhys. Lett. 106 58004
[31] Murphy K A, Reiser N, Choksy D, Singer C E, Jaeger H M 2016 Granular Matter 18 26
[32] Zhao Y C, Liu K, Zheng M, Barés J, Dierichs K, Menges A, Behringer R P 2016 Granular Matter. 18 24
[33] Franklin S V 2012 Physics Today 65 70
[34] Gravish N, I. Goldman D 2016Fluids, Colloids and Soft Materials pp341-354
[35] Zhao Y C, Barés J, Socolar J E S 2020 Phys. Rev. E 101 062903
[36] Govender N, Wilke D N, Wu C Y, Khinast J, Pizette P, Xu W J 2018 Chem. Eng. Sci. 188 34
[37] Roth L K, Jaeger H M 2016 Soft Matter 12 1107
[38] Zhang S Y, Zeng Z K, Yuan H F, Li Z F, Wang Y J 2024 Commun. Phys. 7 202
[39] Egres R G, Wagner N J 2005 J. Rheol. 49 719
[40] Dierichs K, Menges A 2016 Granular Matter 18 25
[41] Dierichs K, Menges A 2021 Bioinspiration & Biomimetics 16 065010
[42] Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409
[43] Cao Y X, Li J D, Kou B Q, Xia C J, Li Z F, Chen R C, Xie H L, Xiao T Q, Kob W, Hong L, Zhang J, Wang Y J 2018 Nat. Commun. 9 2911
[44] Aste T, Saadatfar M, Senden T J 2005 Phys. Rev. E 71 061302
计量
- 文章访问数: 29
- PDF下载量: 0
- 被引次数: 0