-
颗粒物质的堆积行为及其力学性质对工程应用至关重要。尽管单分散球体堆积研究较为成熟,但实际体系普遍存在粒径多分散性。双分散系统作为多分散体系的简化模型,其粒径与成分比的调控机制尚未完全阐明,尤其在摩擦效应和制备历史影响方面缺乏系统性分析,且三维实验数据匮乏。本研究通过振动实验结合X射线断层扫描技术,系统研究了双分散硬球体系的堆积特性,重点探究粒径分布和振动强度对体积分数及微观结构的调控规律。实验发现:随振动强度增大,体系稳态体积分数逐渐降低,不同成分比体系均呈现类似趋势;动力学弛豫时间随振动强度呈指数衰减,且与粒径分布无关;Voronoi元胞分析表明双分散体系中各组分局部体积分布与单分散体系高度相似,降低振动强度可提升体系密度并减小体积涨落。此外,接触数与体积分数的关系遵循单分散体系规律,且受振动强度和颗粒摩擦特性共同调控。本研究揭示了多分散颗粒体系堆积行为的普适性特征,为建立颗粒物质统计理论和发展工程应用提供了关键实验依据,特别在摩擦效应与动力学协同机制方面取得重要突破。The packing behavior and mechanical properties of granular materials play a critical role in various engineering applications, including materials handling, construction, and energy storage. Although significant progress has been made in understanding the packing of monodisperse spheres, real-world granular systems often exhibit polydispersity, where particles of different sizes coexist. Binary systems, where the particle size ratio is adjustable, serve as a simplified model to study the structural and dynamical properties of granular materials. However, most theoretical studies on binary systems have focused on idealized frictionless models, neglecting the coupled effects of friction and preparation history, and experimental data for three-dimensional systems remain limited. This study seeks to address these gaps by investigating the packing behavior of binary hard spheres under tapping, using advanced experimental techniques such as X-ray computed tomography (CT) and tap-driven compaction. We systematically explore the effects of particle size ratio and tap intensity on the packing fraction and local structure of binary granular systems. The experimental results show that the steady-state packing fraction decreases as tap intensity increases, exhibiting similar behavior across different composition ratios. Additionally, the compaction dynamics are quantified using the Kohlrausch-Williams-Watts (KWW) relaxation function, revealing that the relaxation time decays exponentially with tap intensity, independent of the composition ratios. Voronoi cell analysis demonstrates that the local volume distribution of both big and small particles in binary systems follows statistical patterns similar to monodisperse systems. Notably, as tap intensity decreases, the system density increases, and volume fluctuations decrease, mirroring trends observed in monodisperse packings. Furthermore, the study highlights the influence of friction on the packing structure. For binary systems, big particles, with rougher surfaces, pack more loosely than smaller particles, and the coordination number increases with the proportion of smaller particles. This suggests that frictional interactions between particles play a significant role in determining the packing density and structural stability of granular materials. The average coordination number and the steady-state packing fraction are found to be weakly dependent on each other, with friction and tap intensity (or effective temperature) being the primary factors affecting the system's structural characteristics. These findings provide a comprehensive experimental framework for understanding the packing behavior of binary granular systems, with important implications for material design in industrial applications. The study contributes to the development of a more complete statistical mechanical theory for granular materials, incorporating both frictional effects and the influence of preparation history. Future research may extend these findings to more complex particle size distributions and explore the relationship between structural and mechanical properties.
-
Keywords:
- Granular packing /
- Binary systems /
- X-ray computed tomography
-
[1] Parisi G, Zamponi F 2010 Rev. Mod. Phys. 82 789
[2] Burin A 2006 Physics Today 59 64
[3] Hansen J P, Mcdonald I R, Henderson D A
[4] Hales T C 2005 Annals of mathematics 1065
[5] Torquato S, Stillinger F H 2010 Rev. Mod. Phys. 82 2633
[6] Baule A, Morone F, Herrmann H J, Makse H A 2018 Rev. Mod. Phys. 90 015006 58
[7] Yuan Y, Xing Y, Zheng J, Li Z F, Yuan H F, Mang S Y, Zeng Z K, Xia C J, Tong H, Kob W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 127 018002 7
[8] Xing Y, Yuan Y, Yuan H F, Zhang S Y, Zeng Z K, Zheng X, Xia C J, Wang Y J 2024 Nat. Phys. 20 8
[9] Kou B, Cao Y, Li J, Xia C, Li Z, Dong H, Zhang A, Zhang J, Kob W, Wang Y 2017 Nature 551 360
[10] Aste T, Weaire D 2001 Physikalische Blatter 57 72
[11] Cumberland D, Crawford R J 1987
[12] German R M 1989 Particle Packing Characteristics (Metal Powder Industries Federation)
[13] Onoda G Y, Liniger E G 1990 Phys. Rev. Lett. 64 2727
[14] Dong K J, Yang R Y, Zou R P, Yu A B 2006 Phys. Rev. Lett. 96 169903 1
[15] Jerkins M, Schröter M, Swinney H L, Senden T J, Saadatfar M, Aste T 2008 Phys. Rev. Lett. 101 018301 4
[16] Silbert L E 2010 Soft Matter 6 2918
[17] Vinutha H A, Sastry S 2016 Nat. Phys. 12 578
[18] Sohn H Y, Moreland C 1968 Canadian Journal of Chemical Engineering 46 162
[19] Santiso E, Müller E A 2002 Mol. Phys. 100 2461
[20] Brouwers H J H 2006 Phys. Rev. E 74 031309 14
[21] Desmond K W, Weeks E R 2014 Phys. Rev. E 90 022204 6
[22] Peng A, Yuan Y, Wang Y 2023 National Science Open 2 20220069
[23] Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409 9
[24] Gooch J W (Gooch J W ed) 2011 Encyclopedic Dictionary of Polymers (New York, NY: Springer New York) pp413-414
[25] Biazzo I, Caltagirone F, Parisi G, Zamponi F 2009 Phys. Rev. Lett. 102 195701 4
[26] Yuan H F, Zhang Z, Kob W, Wang Y J 2021 Phys. Rev. Lett. 127 278001 6
[27] Hopkins A B, Stillinger F H, Torquato S 2013 Phys. Rev. E 88 022205 14
[28] Danisch M, Jin Y L, Makse H A 2010 Phys. Rev. E 81 051303 5
[29] Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y, Wang Y J 2021 Sci. Adv. 7 eabe8737 8
[30] Matsumura S, Richardson D C, Michel P, Schwartz S R, Ballouz R-L 2014 Monthly Notices of the Royal Astronomical Society 443 3368
[31] Aste T, Saadatfar M, Senden T J 2005 Phys. Rev. E 71 061302 15
计量
- 文章访问数: 110
- PDF下载量: 1
- 被引次数: 0