搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振动驱动下双分散硬球颗粒堆积的结构研究

刘泽林 袁后非 曾智坤 姜永伦 葛转 王宇杰

引用本文:
Citation:

振动驱动下双分散硬球颗粒堆积的结构研究

刘泽林, 袁后非, 曾智坤, 姜永伦, 葛转, 王宇杰

Structural study of binary hard-sphere packing under tapping

LIU Zelin, YUAN Houfei, ZENG Zhikun, JIANG Yonglun, GE Zhuan, WANG Yujie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 颗粒物质的堆积行为及其力学性质对工程应用至关重要. 尽管单分散球体堆积研究较为成熟, 但实际体系普遍存在粒径多分散性. 双分散系统作为多分散体系的简化模型, 其粒径与成分比的调控机制尚未完全阐明, 尤其在摩擦效应和制备历史影响方面缺乏系统性分析, 且三维实验数据匮乏. 本研究通过振动实验结合X射线断层扫描技术, 系统研究了双分散硬球体系的堆积特性, 重点探究粒径分布和振动强度对体积分数及微观结构的调控规律. 实验发现, 随振动强度增大, 体系稳态体积分数逐渐降低, 不同成分比体系均呈现类似趋势; 动力学弛豫时间随振动强度呈指数衰减, 且与粒径分布无关; Voronoi元胞分析表明双分散体系中各组分局部体积分布与单分散体系高度相似, 降低振动强度可提升体系密度并减小体积涨落. 此外, 接触数与体积分数的关系遵循单分散体系规律, 且受振动强度和颗粒摩擦特性共同调控. 本研究揭示了多分散颗粒体系堆积行为的普适性特征, 为建立颗粒物质统计理论和发展工程应用提供了关键实验依据, 特别在摩擦效应与动力学协同机制方面取得重要突破.
    The packing behavior and mechanical properties of granular materials play a critical role in various engineering applications, including materials handling, construction, and energy storage. Although significant progress has been made in understanding the packing of monodisperse spheres, real-world granular systems often exhibit polydispersity, where particles of different sizes coexist. Binary systems, where the particle size ratio is adjustable, serve as a simplified model to study the structural and dynamical properties of granular materials. However, most theoretical studies on binary systems focus on idealized frictionless models, neglecting the coupled effects of friction and preparation history, and experimental data for three-dimensional systems remain limited. This study seeks to address these gaps by investigating the packing behavior of binary hard spheres under tapping through using advanced experimental techniques such as X-ray computed tomography (CT) and tap-driven compaction. The effects of particle size ratio and tap intensity on the packing fraction and local structure of binary granular systems are investigated systematically. The experimental results show that the steady-state packing fraction decreases as tap intensity increases, exhibiting similar behavior at different composition ratios. Additionally, the compaction dynamics are quantified using the Kohlrausch-Williams-Watts (KWW) relaxation function, revealing that the relaxation time decays exponentially with tap intensity increasing, independent of the composition ratio. Voronoi cell analysis demonstrates that the local volume distribution of each component in a bidisperse system composed of big particles and small particles is highly similar to that in a monodisperse system. Notably, as tap intensity decreases, the system density increases, and volume fluctuation decreases, reflecting the trends observed in monodisperse packings. Furthermore, the study highlights the influence of friction on the packing structure. For binary systems, big particles, with rougher surfaces, pack more loosely than smaller particles, and the coordination number increases with the proportion of smaller particles increasing. This suggests that frictional interactions between particles play a significant role in determining the packing density and structural stability of granular materials. The average coordination number and the steady-state packing fraction are found to be weakly dependent on each other, with friction and tap intensity (or effective temperature) being the primary factors affecting the system's structural characteristics. These findings provide a comprehensive experimental framework for understanding the packing behavior of binary granular systems, with important implications for material design in industrial applications. This study contributes to developing a more complete statistical mechanical theory for granular materials through combining both frictional effects and the influence of preparation history. Future research may extend these findings to more complex particle size distributions and explore the relationship between structural property and mechanical property.
  • 图 1  休止角$\theta $随时间$t$的变化图, 其中蓝色与红色线条分别对应8 mm和6 mm颗粒

    Fig. 1.  Variation of the angle of repose $\theta $ with time $t$, where the blue and red lines correspond to the 8 mm and 6 mm particles, respectively.

    图 2  (a)实验装置; (b)重建的双分散体系的堆积结构(红色与蓝色粒子分别对应8 mm和6 mm颗粒)

    Fig. 2.  (a) Experimental setup; (b) reconstructed packing structure of the binary system (Red and blue spheres represent the 8 mm and 6 mm particles, respectively).

    图 3  Voronoi元胞示意图

    Fig. 3.  Schematic diagram of Voronoi cells.

    图 4  (a)归一化后的颗粒数密度在垂直方向的分布图, 插图为局部体积分数在垂直方向的分布图; (b)归一化后的颗粒数密度在径向的分布图, 插图为局部体积分数在径向的分布图

    Fig. 4.  (a) Distribution of normalized particle number density in the vertical direction, the inset shows the distribution of local volume fraction in the vertical direction; (b) distribution of normalized particle number density in the radial direction, the inset shows the distribution of local volume fraction in the radial direction.

    图 5  不同${x_{\text{s}}}$的双(单)分散体系, 在不同振动强度$\varGamma $下的弛豫过程, 图中横轴为振动次数

    Fig. 5.  Relaxation processes of binary (monodisperse) systems with different ${x_{\text{s}}}$ under various tap intensities $\varGamma $, where the horizontal axis represents the number of taps.

    图 6  不同${x_{\text{s}}}$的双分散体系弛豫时间$\tau $随振动强度$\varGamma $的函数关系

    Fig. 6.  Relaxation time $\tau $ as a function of tap intensity $\varGamma $ for binary systems with different concentration ${x_{\text{s}}}$.

    图 7  (a)不同成分比${x_{\text{s}}}$下, 体系稳态体积分数$\phi $关于振动强度$\varGamma $的函数关系; (b) 不同$\varGamma $下, $\phi $关于${x_{\text{s}}}$的函数关系; 去除边界颗粒后, 双分散体系的成分比${x_{\text{s}}}$会产生轻微偏移, 致使(b)中数据呈现偏差; 本文中所有图例${x_{\text{s}}}$值表示相同初始混合比下, 经边界颗粒去除后不同振动强度体系的均值

    Fig. 7.  (a) The packing fraction of steady states $\phi $ as a function of tap intensity $\varGamma $ for different concentration ${x_{\text{s}}}$; (b) $\phi $ as a function of ${x_{\text{s}}}$ for different $\varGamma $. After removing boundary particles, the composition ratio of the binary system exhibits slight deviations from the initial mixture proportion, leading to discrepancies in the data shown in panel (b). All legend values in this study represent averaged values across systems with identical initial mixing ratios under varying vibration intensities after boundary particle removal.

    图 8  两种情况下体积分数与振动强度的关系图, 插图为${r_2}$的半径的概率分布图

    Fig. 8.  Relationship between volume fraction and vibration intensity in two cases, the inset shows the probability distribution of the radius.

    图 9  不同成分比${x_{\text{s}}}$下, 稳态堆积的大球径向Voronoi体积${v_{{\text{voro, b}}}}$的概率分布随振动强度$\varGamma $的演化

    Fig. 9.  Evolution of probability distribution for radical Voronoi volumes ${v_{{\text{voro, b}}}}$ for big particles in steady-state packings with different concentration ${x_{\text{s}}}$ as a function of vibration tap intensity $\varGamma $.

    图 10  不同成分比${x_{\text{s}}}$下, 稳态堆积的小球径向Voronoi体积${v_{{\text{voro, s}}}}$的概率分布随振动强度$\varGamma $的演化

    Fig. 10.  Evolution of probability distribution for radical Voronoi volumes ${v_{{\text{voro, s}}}}$ for big particles in steady-state packings with different concentration ${x_{\text{s}}}$ as a function of vibration tap intensity $\varGamma $.

    图 11  不同振动强度$\varGamma $下 (a)大球和(b)小球的平均Voronoi体积$\left\langle {{v_{{\text{voro}}}}} \right\rangle $随不同成分比${x_{\text{s}}}$的演化. 插图为${\left\langle {{v_{{\text{voro}}}}} \right\rangle ^{1/3}}$和${x_{\text{s}}}$的关系

    Fig. 11.  Evolution of the average Voronoi volume of (a) big particles and (b) small particles with varying concentration ${x_{\text{s}}}$ under different tap intensities $\varGamma $. The inset is relation between ${\left\langle {{v_{{\text{voro}}}}} \right\rangle ^{1/3}}$ and ${x_{\text{s}}}$.

    图 12  不同$\varGamma $下, 相分离程度$\alpha $关于${x_{\text{s}}}$的函数关系

    Fig. 12.  Functional relationship between phase separation degree $\alpha $ and ${x_{\text{s}}}$ at different values of $\varGamma $.

    图 13  (a)二维的表面间距示意图; (b)—(f)不同成分比${x_{\text{s}}}$下, 15个邻近粒子的小球数${n_{\text{s}}}$的概率分布

    Fig. 13.  (a) Schematic illustration of surface-to-surface distance in two dimensions; (b)–(f) probability distribution of the number of small particles among 15 nearest neighbors for different concentration ${x_{\text{s}}}$.

    图 14  Voronoi近邻中平均小球占比${m_{{\text{α s}}}}$关于成分比${x_{\text{s}}}$的函数, 其中$\alpha $为中心粒子的类型

    Fig. 14.  Average fraction of small particles in Voronoi neighbors ${m_{{\text{α s}}}}$ as a function of concentration ${x_{\text{s}}}$, $\alpha $ is the type of the central particle .

    图 15  (a)近邻颗粒的表面间距的概率密度分布和高斯拟合; (b) 平均接触数$Z$和接触阈值${\delta _{{\text{th}}}}$的函数关系

    Fig. 15.  (a) Probability density distribution of surface-to-surface distances between neighboring particles and its Gaussian fit; (b) the relation between the average coordination number $Z$ and the contact threshold ${\delta _{{\text{th}}}}$.

    图 16  不同成分比${x_{\text{s}}}$下, (a)接触数Z关于振动强度Γ的函数关系; (b)体系稳态体积分数$\phi $关于接触数Z的函数关系; 插图为归一化后体积分数$ \tilde \phi $与接触数$\tilde Z$的关系

    Fig. 16.  (a) Relationship between the average coordination number Z and the tap intensity Γ for different concentration ${x_{\text{s}}}$; (b) relation between the steady-state volume fraction $\phi $ and the coordination number; inset is the relation between the normalized volume fraction $ \tilde \phi $ and the coordination number $\tilde Z$.

  • [1]

    Parisi G, Zamponi F 2010 Rev. Mod. Phys. 82 789Google Scholar

    [2]

    Burin A 2006 Phys. Today 59 64

    [3]

    Haslach Jr H 2002 Appl. Mech. Rev. 55 B62Google Scholar

    [4]

    Torquato S, Stillinger F H 2010 Rev. Mod. Phys. 82 2633Google Scholar

    [5]

    Baule A, Morone F, Herrmann H J, Makse H A 2018 Rev. Mod. Phys. 90 015006Google Scholar

    [6]

    Yuan Y, Xing Y, Zheng J, Li Z F, Yuan H F, Mang S Y, Zeng Z K, Xia C J, Tong H, Kob W, Zhang J, Wang Y J 2021 Phys. Rev. Lett. 127 018002Google Scholar

    [7]

    Xing Y, Yuan Y, Yuan H F, Zhang S Y, Zeng Z K, Zheng X, Xia C J, Wang Y J 2024 Nat. Phys. 20 8Google Scholar

    [8]

    Kou B Q, Cao Y X, Li J D, Xia C J, Li Z F, Dong H P, Zhang A, Zhang J, Kob W, Wang Y J 2017 Nature 551 360Google Scholar

    [9]

    Aste T, Weaire D 2001 Phys. Bl. 57 72

    [10]

    Cumberland D, Crawford R J 1987

    [11]

    German R M 1989 Particle Packing Characteristics (Metal Powder Industries Federation

    [12]

    Onoda G Y, Liniger E G 1990 Phys. Rev. Lett. 64 2727Google Scholar

    [13]

    Dong K J, Yang R Y, Zou R P, Yu A B 2006 Phys. Rev. Lett. 96 169903Google Scholar

    [14]

    Jerkins M, Schröter M, Swinney H L, Senden T J, Saadatfar M, Aste T 2008 Phys. Rev. Lett. 101 018301Google Scholar

    [15]

    Silbert L E 2010 Soft Matter 6 2918Google Scholar

    [16]

    Vinutha H A, Sastry S 2016 Nat. Phys. 12 578Google Scholar

    [17]

    Sohn H Y, Moreland C 1968 Can. J. Chem. Eng. 46 162Google Scholar

    [18]

    Santiso E, Müller E A 2002 Mol. Phys. 100 2461Google Scholar

    [19]

    Brouwers H J H 2006 Phys. Rev. E 74 031309Google Scholar

    [20]

    Desmond K W, Weeks E R 2014 Phys. Rev. E 90 022204Google Scholar

    [21]

    Peng A, Yuan Y, Wang Y 2023 NSO 2 20220069Google Scholar

    [22]

    Xia C J, Li J D, Cao Y X, Kou B Q, Xiao X H, Fezzaa K, Xiao T Q, Wang Y J 2015 Nat. Commun. 6 8409Google Scholar

    [23]

    Gooch J W (Gooch J W ed) 2011 Encyclopedic Dictionary of Polymers (New York, NY: Springer New York) pp413-414

    [24]

    Biazzo I, Caltagirone F, Parisi G, Zamponi F 2009 Phys. Rev. Lett. 102 195701Google Scholar

    [25]

    Yuan H F, Zhang Z, Kob W, Wang Y J 2021 Phys. Rev. Lett. 127 278001Google Scholar

    [26]

    Hopkins A B, Stillinger F H, Torquato S 2013 Phys. Rev. E 88 022205Google Scholar

    [27]

    Danisch M, Jin Y L, Makse H A 2010 Phys. Rev. E 81 051303Google Scholar

    [28]

    Li Z F, Zeng Z K, Xing Y, Li J D, Zheng J, Mao Q H, Zhang J, Hou M Y, Wang Y J 2021 Sci. Adv. 7 eabe8737Google Scholar

    [29]

    Matsumura S, Richardson D C, Michel P, Schwartz S R, Ballouz R L 2014 Mon. Not. Ro. Astron. Soc. 443 3368Google Scholar

    [30]

    Aste T, Saadatfar M, Senden T J 2005 Phys. Rev. E 71 061302Google Scholar

  • [1] 罗茹丹, 曾志坤, 葛转, 姜永伦, 王宇杰. 基于X射线CT成像技术振动条件下的“六足”凹体颗粒堆积结构实验. 物理学报, doi: 10.7498/aps.74.20250231
    [2] 陈鑫洁, 张敬娜, 张慧滔, 夏迪梦, 徐文峰, 朱溢佞, 赵星. 基于CT扫描数据的X射线能谱估计方法. 物理学报, doi: 10.7498/aps.72.20222307
    [3] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, doi: 10.7498/aps.69.20191681
    [4] 张兴刚, 戴丹. 二维颗粒堆积中压力问题的格点系统模型. 物理学报, doi: 10.7498/aps.66.204501
    [5] 张威, 胡林, 张兴刚. 双分散颗粒体系在临界堵塞态的结构特征. 物理学报, doi: 10.7498/aps.65.024502
    [6] 杨林, 胡林, 张兴刚. 二维晶格颗粒堆积中侧壁的压力分布与转向系数. 物理学报, doi: 10.7498/aps.64.134502
    [7] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, doi: 10.7498/aps.63.174501
    [8] 邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨颢, 刘舵. 基于X射线的空间语音通信系统. 物理学报, doi: 10.7498/aps.62.060705
    [9] 冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, doi: 10.7498/aps.62.184501
    [10] 张品, 梁艳梅, 常胜江, 范海伦. 基于能量最小化的肾脏计算断层扫描图像分割方法. 物理学报, doi: 10.7498/aps.62.208701
    [11] 吴亚敏, 陈国庆. 梯度颗粒复合介质的光学双稳. 物理学报, doi: 10.7498/aps.59.592
    [12] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 粉末材料堆积的物理模型与仿真系统. 物理学报, doi: 10.7498/aps.58.21
    [13] 胡国琦, 涂洪恩, 厚美瑛. 二维颗粒气体在堆积过程中的能量耗散. 物理学报, doi: 10.7498/aps.58.341
    [14] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定. 物理学报, doi: 10.7498/aps.58.5155
    [15] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布. 物理学报, doi: 10.7498/aps.57.4667
    [16] 苗天德, 宜晨虹, 齐艳丽, 慕青松, 刘 源. 集中力作用下球形颗粒六角密排堆积体的传力研究. 物理学报, doi: 10.7498/aps.56.4713
    [17] 张 耘. 极化子荧光及其断层扫描对Ti:LiNbO3光波导表征研究. 物理学报, doi: 10.7498/aps.56.280
    [18] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, doi: 10.7498/aps.56.2030
    [19] 郭洪霞, 麦振洪. 分散相颗粒几何因素对电流变液体反应时间的影响. 物理学报, doi: 10.7498/aps.45.73
    [20] 何延才, 曹立群. Monte Carlo方法计算微颗粒的X射线强度. 物理学报, doi: 10.7498/aps.33.241
计量
  • 文章访问数:  440
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25
  • 修回日期:  2025-04-18
  • 上网日期:  2025-04-29

/

返回文章
返回