搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于梯度超表面的反射型线-圆极化转换器设计

庄亚强 王光明 张小宽 张晨新 蔡通 李海鹏

引用本文:
Citation:

基于梯度超表面的反射型线-圆极化转换器设计

庄亚强, 王光明, 张小宽, 张晨新, 蔡通, 李海鹏

Design of reflective linear-circular polarization converter based on phase gradient metasurface

Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Xiao-Kuan, Zhang Chen-Xin, Cai Tong, Li Hai-Peng
PDF
导出引用
  • 本文设计了同时具有线-圆极化转换和出射波偏折功能的反射型极化转换器. 通过六个不同结构参数的改进型十字结构四分之一波片组成一维相位梯度超表面,将此超表面分别在x 和y 方向进行周期排布,设计了极化转换器. 通过理论分析、仿真计算和实验测试,验证了该极化转换器在13.8-14.7 GHz频带内实现了高效线-圆极化转换和奇异反射. 仿真并测试了镜面反射率、反射功率密度谱和轴比特性,仿真结果和测试结果的一致性良好,结果表明该极化转换器在13.8-14.7 GHz频带内的镜面反射率小于-10 dB,轴比小于2 dB,而且反射波的偏折方向与理论分析相一致.
    Manipulating the propagating direction and polarization state of electromagnetic wave is always fascinating and used in a wide field. One of the approaches to achieving this aim is typically based on steering the propagation phase of wave traveling inside an optical medium, such as dielectric lens. Nevertheless, this approach creates new problems, such as high loss, bulky volume and fabrication difficulty. Recently, metasurface was found to be a two-dimensional equivalence of metamaterial, which attracted a great deal of attention because of its unique properties and capability of manipulating and controlling electromagnetic waves on a sub-wavelength scale. So metasurface serves as an alternative approach to dealing with the loss and fabrication issues, and opens a door for bridging the gap between the fundamental research of the artificial structures and their device applications. A reflective phase gradient metasurface (PGM) achieving the linear-to-circular (LTC) polarization conversion and anomalous reflection simultaneously is designed in this paper. Firstly, the conventional cross-shaped structure is modified for enlarging the phase range. Then, six modified cross-shaped structures are designed cautiously to serve as quarter wave-plates, and achieve 60 phase difference between adjacent structures. The reflection phase difference between x-and y-direction components is 90, and their magnitudes are both equal to 0.5. Secondly, a one-dimensional PGM is constructed by distributing six modified cross-shaped quarter wave-plates one by one. Furthermore, an LTC polarization converter with an area of 216 mm216 mm is designed by placing 366 one-dimensional PGMs periodically. The mirror reflectivity and axial ratio are simulated and measured to verify the performances of LTC polarization conversion and anomalous reflection. The measured sample is fabricated by printing circuit board technique through using FR4 substrate, and a free space method is adopted in measurement in the anechoic chamber. In addition, the operating bandwidth can be evaluated from the reflective power density spectra. The measured results of mirror reflectivity, reflective power density spectra and axial ratio characteristic are in good agreement with the corresponding simulations, which shows that the mirror reflectivity is lower than -10 dB; the axial ration is lower than 2 dB within the frequency band of 13.8-14.7 GHz. Meanwhile, the theoretical reflection angles from the generalized Snell law are consistent with the CST microwave studio simulated results and measured results. Compared with the reported LTC polarization converters, the proposed LTC polarization converter not only achieves polarization conversion, but also can manipulate the output wave direction, thereby it has an important promising application value for microwave engineering and communication system.
      通信作者: 王光明, wgming01@sina.com
    • 基金项目: 国家自然科学基金(批准号:61372034)资助的课题.
      Corresponding author: Wang Guang-Ming, wgming01@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [3]

    Wang J F, Qu S B, Ma H Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [4]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [5]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2015 IEEE Antennas Wireless. Propag. Lett. 14 104

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [7]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [8]

    Gao X, Han X, Gao W P, Li H Q, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [10]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [11]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5269

    [12]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [13]

    Liu W W, Chen S, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185

    [14]

    Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W, Al A 2015 Adv. Mater. 27 1195

    [15]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154504

    [16]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [17]

    Zhao Y, Al A 2013 Nano Lett. 13 1086

    [18]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie J L, Deng L J 2015 Appl. Phys. B 120 617

    [19]

    Li L, Li Y J, Wu Z, Huo F F, Zhang Y L, Zhao C S 2015 Proc. IEEE 103 1057

    [20]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 物理学报 64 164102]

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [2]

    Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223

    [3]

    Wang J F, Qu S B, Ma H Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [4]

    Sun S L, He Q, Xiao S Y, Xu Q, Li X, Zhou L 2012 Nature Mater. 11 426

    [5]

    Shi H Y, Li J X, Zhang A X, Jiang Y S, Wang J F, Xu Z, Xia S 2015 IEEE Antennas Wireless. Propag. Lett. 14 104

    [6]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [7]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717

    [8]

    Gao X, Han X, Gao W P, Li H Q, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522

    [9]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Zheng L, Pang Y Q, Xu Z, Zhang A X 2015 J. Appl. Phys. 117 044501

    [10]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [11]

    Cai T, Wang G M, Zhang X F, Liang J G, Zhuang Y Q, Liu D, Xu H X 2015 IEEE Trans. Antennas Propag. 63 5269

    [12]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [13]

    Liu W W, Chen S, Li Z C, Cheng H, Yu P, Li J X, Tian J G 2015 Opt. Lett. 40 3185

    [14]

    Ding X M, Monticone F, Zhang K, Zhang L, Gao D L, Burokur S N, Lustrac A, Wu Q, Qiu C W, Al A 2015 Adv. Mater. 27 1195

    [15]

    Chen H Y, Wang J F, Ma H, Qu S B, Xu Z, Zhang A X, Yan M B, Li Y F 2014 J. Appl. Phys. 115 154504

    [16]

    Shao J, Li J, Wang Y H, Li J Q, Chen Q, Dong Z G 2014 J. Appl. Phys. 115 243503

    [17]

    Zhao Y, Al A 2013 Nano Lett. 13 1086

    [18]

    Zhang L B, Zhou P H, Chen H Y, Lu H P, Xie J L, Deng L J 2015 Appl. Phys. B 120 617

    [19]

    Li L, Li Y J, Wu Z, Huo F F, Zhang Y L, Zhao C S 2015 Proc. IEEE 103 1057

    [20]

    Wu C J, Cheng Y Z, Wang W Y, He B, Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese) [吴晨骏, 程用志, 王文颖, 何博, 龚荣洲 2015 物理学报 64 164102]

  • [1] 魏涛, 张玉洁, 葛宏义, 蒋玉英, 吴旭阳, 孙振雨, 季晓迪, 补雨薇, 贾柯柯. 复合相位调控的波束转向可控反射型超表面. 物理学报, 2024, 73(22): 1-10. doi: 10.7498/aps.73.20240764
    [2] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [3] 吴柔兰, 李九生. 线极化与圆极化波均可吸收的太赫兹超表面. 物理学报, 2023, 72(5): 057802. doi: 10.7498/aps.72.20221832
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2022, 71(4): 044101. doi: 10.7498/aps.71.20211914
    [6] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [7] 赵振宇, 刘海文, 陈智娇, 董亮, 常乐, 高萌英. 基于超材料角反射面的高增益高效率双圆极化Fabry-Perot天线设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211914
    [8] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [9] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [10] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [11] 李文惠, 张介秋, 屈绍波, 沈杨, 余积宝, 范亚, 张安学. 基于极化旋转超表面的圆极化天线设计. 物理学报, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101
    [12] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [13] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [14] 庄亚强, 王光明, 张晨新, 张小宽, 宗彬锋, 马卫东, 王亚伟. 单层高效透射型相位梯度超表面的设计及实验验证. 物理学报, 2016, 65(15): 154101. doi: 10.7498/aps.65.154101
    [15] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [17] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 李有权, 付云起, 张辉, 袁乃昌. 基于传输线模型的高阻表面反射相位分析. 物理学报, 2009, 58(6): 3949-3954. doi: 10.7498/aps.58.3949
计量
  • 文章访问数:  8156
  • PDF下载量:  689
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 修回日期:  2016-06-01
  • 刊出日期:  2016-08-05

/

返回文章
返回