搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含羟基结构熔石英光电性质的第一性原理研究

石彦立 韩伟 卢铁城 陈军

引用本文:
Citation:

含羟基结构熔石英光电性质的第一性原理研究

石彦立, 韩伟, 卢铁城, 陈军

First principles study of the electronic and optical properties of silica glass with hydroxyl group

Shi Yan-Li, Han Wei, Lu Tie-Cheng, Chen Jun
PDF
导出引用
  • 熔石英是高功率激光装置中广泛使用的激光透镜材料. 采用第一性原理结合平面波赝势方法,研究了熔石英材料中羟基结构的生成模式,系统计算了材料的电子态密度、差分电荷密度、原子电荷布居分布,分析了包含羟基熔石英材料的光学跃迁模式. 研究结果表明:熔石英中的三配位硅原子缺陷在禁带中生成了两条缺陷能级,分别位于7.8和8.8 eV;研究还发现氢原子与五配位硅原子发生相互作用生成羟基结构,该反应还使三配位硅原子的杂化方式由sp2变为sp3,这种羟基结构会影响体系的电子结构,使原有的7.8和8.8 eV缺陷能级消失,并在费米面上生成一条半占据态缺陷能级,引起激发能为6.2 eV的光学跃迁.
    The formation model of hydroxyl group in silica glass is studied by first-principles calculations combined with coupling plane wave pseudo-potential method. The electronic structures and optical properties of silica glass with and without hydroxyl group are systematically calculated, including electronic densities of states, charge difference densities, Bader charge, etc. And optical transition models are analyzed. Our results show that three-fold coordinated silicon in silica glass induces two defect energy levels in forbidden gap, which are at 7.8 eV and 8.8 eV, respectively. Also, we find that H atom can interact with five-fold coordinated Si and forms hydroxyl group, and causes the three-fold coordinated silicon atom to change from sp2 hybridization to sp3 hybridization. Such a kind of hydroxyl group influences the electronic structure and optical properties of silica glass, by forming a half-occupied electronic state at Fermi level, and also by generating an optical transition, of which the excitation energy is 6.2 eV.
    • 基金项目: 国家自然科学基金(批准号:1172048)和国防基础科学研究计划(批准号:B1520132013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 1172048) and the National Defense Basic Scientific Research Program of China (Grant No. B1520132013).
    [1]

    Moses E I 2004 Proc. SPIE 5341 13

    [2]

    Andr’e M L, Decroisette M 1998 Europhys. News 6 235

    [3]

    Liu H J, Wang F R, Luo Q, Zhang Z, Huang J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2012 Acta Phys. Sin. 61 076103 (in Chinese) [刘红婕, 王凤蕊, 罗青, 张振, 黄进, 周信达, 蒋晓东, 吴卫东, 郑万国 2012 物理学报 61 076103]

    [4]

    Salleo A, Taylor S T, Martin M C Panero W R, Jeanloz R, Sands T, Génin F Y 2003 Nat. Mater. 2 796

    [5]

    Salleo A, Sands T, Génin F Y 2000 Appl. Phys. A 71 601

    [6]

    Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zhen W G 2010 Acta Phys. Sin. 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 物理学报 59 5122]

    [7]

    Skuja L 1998 J. Non-Cryst. Solids 239 16

    [8]

    Skuja L 2001 Proc. SPIE 4347 155

    [9]

    Weeks R A 1956 J. Appl. Phys. 27 1376

    [10]

    Griscom D L, Friebele E J 1986 Phys. Rev. B 34 7524

    [11]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505

    [12]

    Devine R A B, Arndt J 1989 Phys. Rev. B 39 5312

    [13]

    Radzig V A, Bagratashvili V N, Tsypina S I Chernov P V, Rybaltovskii A O 1995 J. Phys. Chem. 99 6640

    [14]

    Sempolinski D R, Seward T P, Smith C, Borrelli N, Rosplock C 1996 J. Non-Cryst. Solids 203 69

    [15]

    Shimbo M, Nakajima T, Tsuji N, Kakuno T, Obara T 1999 J. Appl. Phys. 38 L848

    [16]

    Oto M, Kikugawa S, Miura T, Hirano M, Hosono H 2004 J. Non-Cryst. Solids 349 133

    [17]

    Hosono H, Abe Y, Imagawa H, Imai H, Arai K 1991 Phys. Rev. B 44 12043

    [18]

    Imai H, Arai K, Hosono H, Abe Y, Arai T, Imagawa H 1991 Phys. Rev. B 44 4812

    [19]

    Stone J 1987 J. Lightwave Technol. 5 712

    [20]

    Schmidt B C, Holtz F M, Beny J M 1998 J. Non-Cryst. Solids 240 91

    [21]

    Ikuta Y, Kajihara K, Hirano M, Hosono H 2004 Appl. Opt. 43 2332

    [22]

    Yokozawa A, Miyamoto Y 1997 Phys. Rev. B 55 13783

    [23]

    BlochlP E 2000 Phys. Rev. B 62 6158

    [24]

    Godet J, Pasquarello A 2005 Microelectr. Engineer. 80 288

    [25]

    Pacchioni G, Ferrario R 1998 Phys. Rev. B 58 6090

    [26]

    Giordano L, Sushko P V, Pacchioni G, Shluger A L 2007 Phys. Rev. B 75 024109

    [27]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [28]

    Sarnthein J, Pasquarello A, Car R 1995 Phys. Rev. B 52 12690

    [29]

    Munetoh S, Motooka T, Moriguchib K, Shintani A 2007 Comput. Mater. Sci. 39 334

    [30]

    Johnson P A V, Wright A C, Sinclair R N 1983 J. Non-Cryst. Solids 58 109

    [31]

    Dupree R, Pettifer R F 1991 Nature 308 523

    [32]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Angyan J G 2006 J. Chem. Phys. 125 249901

    [33]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [34]

    Martin-Samos L, Bussi G, Ruini A, Molinari E 2010 Phys. Rev. B 81 081202

  • [1]

    Moses E I 2004 Proc. SPIE 5341 13

    [2]

    Andr’e M L, Decroisette M 1998 Europhys. News 6 235

    [3]

    Liu H J, Wang F R, Luo Q, Zhang Z, Huang J, Zhou X D, Jiang X D, Wu W D, Zheng W G 2012 Acta Phys. Sin. 61 076103 (in Chinese) [刘红婕, 王凤蕊, 罗青, 张振, 黄进, 周信达, 蒋晓东, 吴卫东, 郑万国 2012 物理学报 61 076103]

    [4]

    Salleo A, Taylor S T, Martin M C Panero W R, Jeanloz R, Sands T, Génin F Y 2003 Nat. Mater. 2 796

    [5]

    Salleo A, Sands T, Génin F Y 2000 Appl. Phys. A 71 601

    [6]

    Wang F R, Huang J, Liu H J, Zhou X D, Jiang X D, Wu W D, Zhen W G 2010 Acta Phys. Sin. 59 5122 (in Chinese) [王凤蕊, 黄进, 刘红婕, 周信达, 蒋晓东, 吴卫东, 郑万国 2010 物理学报 59 5122]

    [7]

    Skuja L 1998 J. Non-Cryst. Solids 239 16

    [8]

    Skuja L 2001 Proc. SPIE 4347 155

    [9]

    Weeks R A 1956 J. Appl. Phys. 27 1376

    [10]

    Griscom D L, Friebele E J 1986 Phys. Rev. B 34 7524

    [11]

    Lu Z Y, Nicklaw C J, Fleetwood D M, Schrimpf R D, Pantelides S T 2002 Phys. Rev. Lett. 89 285505

    [12]

    Devine R A B, Arndt J 1989 Phys. Rev. B 39 5312

    [13]

    Radzig V A, Bagratashvili V N, Tsypina S I Chernov P V, Rybaltovskii A O 1995 J. Phys. Chem. 99 6640

    [14]

    Sempolinski D R, Seward T P, Smith C, Borrelli N, Rosplock C 1996 J. Non-Cryst. Solids 203 69

    [15]

    Shimbo M, Nakajima T, Tsuji N, Kakuno T, Obara T 1999 J. Appl. Phys. 38 L848

    [16]

    Oto M, Kikugawa S, Miura T, Hirano M, Hosono H 2004 J. Non-Cryst. Solids 349 133

    [17]

    Hosono H, Abe Y, Imagawa H, Imai H, Arai K 1991 Phys. Rev. B 44 12043

    [18]

    Imai H, Arai K, Hosono H, Abe Y, Arai T, Imagawa H 1991 Phys. Rev. B 44 4812

    [19]

    Stone J 1987 J. Lightwave Technol. 5 712

    [20]

    Schmidt B C, Holtz F M, Beny J M 1998 J. Non-Cryst. Solids 240 91

    [21]

    Ikuta Y, Kajihara K, Hirano M, Hosono H 2004 Appl. Opt. 43 2332

    [22]

    Yokozawa A, Miyamoto Y 1997 Phys. Rev. B 55 13783

    [23]

    BlochlP E 2000 Phys. Rev. B 62 6158

    [24]

    Godet J, Pasquarello A 2005 Microelectr. Engineer. 80 288

    [25]

    Pacchioni G, Ferrario R 1998 Phys. Rev. B 58 6090

    [26]

    Giordano L, Sushko P V, Pacchioni G, Shluger A L 2007 Phys. Rev. B 75 024109

    [27]

    Donadio D, Bernasconi M, Boero M 2001 Phys. Rev. Lett. 87 195504

    [28]

    Sarnthein J, Pasquarello A, Car R 1995 Phys. Rev. B 52 12690

    [29]

    Munetoh S, Motooka T, Moriguchib K, Shintani A 2007 Comput. Mater. Sci. 39 334

    [30]

    Johnson P A V, Wright A C, Sinclair R N 1983 J. Non-Cryst. Solids 58 109

    [31]

    Dupree R, Pettifer R F 1991 Nature 308 523

    [32]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Angyan J G 2006 J. Chem. Phys. 125 249901

    [33]

    Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010 Phys. Rev. B 81 153203

    [34]

    Martin-Samos L, Bussi G, Ruini A, Molinari E 2010 Phys. Rev. B 81 081202

计量
  • 文章访问数:  2079
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-02
  • 修回日期:  2014-01-21
  • 刊出日期:  2014-04-05

含羟基结构熔石英光电性质的第一性原理研究

  • 1. 四川大学物理科学与技术学院, 成都 610065;
  • 2. 北京应用物理与计算数学研究所, 北京 100088;
  • 3. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号:1172048)和国防基础科学研究计划(批准号:B1520132013)资助的课题.

摘要: 熔石英是高功率激光装置中广泛使用的激光透镜材料. 采用第一性原理结合平面波赝势方法,研究了熔石英材料中羟基结构的生成模式,系统计算了材料的电子态密度、差分电荷密度、原子电荷布居分布,分析了包含羟基熔石英材料的光学跃迁模式. 研究结果表明:熔石英中的三配位硅原子缺陷在禁带中生成了两条缺陷能级,分别位于7.8和8.8 eV;研究还发现氢原子与五配位硅原子发生相互作用生成羟基结构,该反应还使三配位硅原子的杂化方式由sp2变为sp3,这种羟基结构会影响体系的电子结构,使原有的7.8和8.8 eV缺陷能级消失,并在费米面上生成一条半占据态缺陷能级,引起激发能为6.2 eV的光学跃迁.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回