搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论

黄文逍 张逸竹 阎天民 江玉海

引用本文:
Citation:

超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论

黄文逍, 张逸竹, 阎天民, 江玉海

Progress in study of low-energy photoelectron in ultra-fast strong fields-analytical R-matrix theory based semiclassical trajectory method

Huang Wen-Xiao, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai
PDF
导出引用
  • 该综述回顾了近期解析R矩阵方法结合半经典理论的发展,介绍其应用于线偏振光场下单活跃电子系统中的求解强场电离概率幅的过程[Torlina L,Smirnova O 2012 Phys.Rev.A 86 043408].解析R矩阵方法通过内外区域分割,可以获得对外区光电子的半解析描述.内区能够提供良好定义的边界条件,外区光电子波函数则可近似为Eikonal-Volkov解.进一步,使用稳相近似,可以将电离概率幅中的积分近似为半经典轨迹及相应相因子对应的分量之和.基于该方法讨论了不同电离时刻隧穿而出波包的形状,近似表现为以半经典轨线为中心的高斯型.在外光场与库仑势同时存在的情况下,亚周期非绝热修正对电离概率有不同的影响.作为特殊的案例,文中重点讨论在复时间平面上使用纯光驱动轨迹与库仑修正相因子研究光电子返回母核附近发生软回碰过程中的一系列关键环节以及对低能结构的影响[Pisanty E,Ivanov M 2016 Phys.Rev.A 93 043408].在引入库仑势后,使用传统积分曲线存在一定的问题,因积分路径可能遭遇分支-切割面导致积分函数丧失解析性.为了克服该问题,隧穿电离后演化过程的时间被拓展到复平面,电子轨迹允许具有虚部.当回碰发生时,需要谨慎处理复时间平面上的分支-切割面.研究发现,复平面上的导航方法与最接近时间有关,最接近时间总存在于一对分支-切割面之间,它可以帮助规避不连续路径.最接近时间解的集合形成丰富的几何结构,使电子在回碰过程中表现出有趣的性质,与低能结构有关的回碰信息就隐藏在这些几何结构中,我们讨论了最接近时间方程解的拓扑结构随参数的变化以及设计路径搜索算法的依据,介绍了实验上与低能结构相关的可能观测到的现象.
    The semi-classical method based on the recently developed analytical R-matrix theory is reviewed in this work. The method is described with the application to ultra-fast strong-field direct ionization of atoms with one active electron in a linearly polarized field[Torlina L, Smirnova O 2012 Phys. Rev. A 86 043408]. The analytical R-matrix theory separates the space into inner and outer regions, naturally allowing the possibility of an analytical or semi-analytical description of wave function in the outer region, which can be approximated by Eikonal-Volkov solutions while the inner region provides well-defined boundary conditions. Applying the stationary phase method, the calculation of the ionization amplitude is cast into a superposition of components from trajectories and their associated phase factors. The shape of the tunneling wave packets associated with different instants of ionization is presented. It shows the exponential cost of deviating from the optimal tunneling trajectory renders the tunneling wave packet a Gaussian shape surrounding the semi-classical trajectory. The intrinsically non-adiabatic corrections to the sub-cycle ionization amplitude in the presence of both the Coulomb potential and the laser field is shown to have different influences on the probability of ionization. As a specific study case, soft recollisions of the released electron near the ionic core is investigated by using pure light-driven trajectories with Coulomb-corrected phase factor[Pisanty E, Ivanov M 2016 Phys. Rev. A 93 043408]. Incorporating the Coulomb potential, it is found problematic to use the conventional integration contour as chosen in other methods with trajectory-based Coulomb corrections, because the integration contour may run into the Coulomb-induced branch cuts and hence the analyticity of the integrand fails. In order to overcome the problem, the evolution time of the post-tunneling electron is extended into the complex domain which allows a trajectory to have an imaginary component. As the soft recollision occurs, the calculation of the ionization amplitude requires navigating the branch cuts cautiously. The navigating scheme is found based on closest-approach times which are the roots of closest-approach times equations. The appropriately selected closest-approach times that always present in the middle of branch-cut gate may serve to circumvent these branch cuts. The distribution of the closest-approach times presents rich geometrical structures in both the classical and quantum domains, and intriguing features of complex trajectories emerge as the electron returns near the core. Soft recollisions responsible for the low-energy structures are embedded in the geometry, and the underlying emergence of near-zero energy structures is discussed with the prediction of possible observations in experiments.
      通信作者: 阎天民, yantm@sari.ac.cn;jiangyh@sari.ac.cn ; 江玉海, yantm@sari.ac.cn;jiangyh@sari.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB922200)、国家自然科学基金(批准号:11420101003,11274232,11604347,61675213,91636105)和上海科委扬帆计划(批准号:16YF1412600)资助的课题.
      Corresponding author: Yan Tian-Min, yantm@sari.ac.cn;jiangyh@sari.ac.cn ; Jiang Yu-Hai, yantm@sari.ac.cn;jiangyh@sari.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11420101003, 11274232, 11604347, 61675213, 91636105), and the Shanghai Sailing Program, China (Grant No. 16YF1412600).
    [1]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008Nat. Phys. 5 335

    [2]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009Phys. Rev. Lett. 103 093001

    [3]

    Liu C, Hatsagortsyan K Z 2010Phys. Rev. Lett. 105 113003

    [4]

    Liu C, Hatsagortsyan K Z 2011J. Phys. B:Atomic, Molecular and Optical Physics 44 095402

    [5]

    Liu C, Hatsagortsyan K Z 2012Phys. Rev. A 85 023413

    [6]

    Paulus G G, Becker W, Nicklich W, Walther H 1994J. Phys. B:Atomic, Molecular and Optical Physics 27 L703

    [7]

    Becker W, Grasbon F, Kopold R, Milošević D, Paulus G, Walther H 2002In Advances in Atomic, Molecular, and Optical Physics (edited by Walther B B A H) (Vol. 48) (Waltham:Academic Press) pp35-98

    [8]

    Miloševic D B, Ehlotzky F 1998J. Phys. B:Atomic, Molecular and Optical Physics 31 4149

    [9]

    Popruzhenko S, Bauer D 2008J. Mod. Opt. 55 2573

    [10]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010Phys. Rev. Lett. 105 253002

    [11]

    Yan T M, Bauer D 2012Phys. Rev. A 86 053403

    [12]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T, Chen J 2012Phys. Rev. Lett. 109 043001

    [13]

    Dura J, Camus N, Thai A, Britz A, Hemmer M, Baudisch M, Senftleben A, Schröter C D, Ullrich J, Moshammer R, Biegert J 2013Sci. Reports 3 2675

    [14]

    Pullen M G, Dura J, Wolter B, Baudisch M, Hemmer M, Camus N, Arne Senftleben, Schroeter C D, Moshammer R, Ullrich J, Biegert J 2014J. Phys. B:Atomic, Molecular and Optical Physics 47 204010

    [15]

    Wolter B, Lemell C, Baudisch M, Pullen M G, Tong X M, Hemmer M, Senftleben A, Schröter C D, Ullrich J, Moshammer R, Biegert J, Burgdörfer J 2014Phys. Rev. A 90 063424

    [16]

    Torlina L, Smirnova O 2012Phys. Rev. A 86 043408

    [17]

    Torlina L, Ivanov M, Walters Z B, Smirnova O 2012Phys. Rev. A 86 043409

    [18]

    Pisanty E, Ivanov M 2016Phys. Rev. A 93 043408

    [19]

    Kaushal J, Smirnova O 2013Phys. Rev. A 88 013421

    [20]

    Torlina L, Kaushal J, Smirnova O 2013Phys. Rev. A 88 053403

    [21]

    Smirnova O, Spanner M, Ivanov M 2006J. Phys. B:Atomic, Molecular and Optical Physics 39 S307

    [22]

    Walters Z B, Smirnova O 2010J. Phys. B:Atomic, Molecular and Optical Physics 43 161002

    [23]

    Caillat J, Zanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005Phys. Rev. A 71 012712

    [24]

    Scrinzi A 2010Phys. Rev. A 81 053845

    [25]

    Tao L, Scrinzi A 2012New J. Phys. 14 013021

    [26]

    Kuchiev M Y 1987JETP Lett. 45 404

    [27]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [28]

    Yudin G L, Ivanov M Y 2001Phys. Rev. A 63 033404

    [29]

    Chen Z, Le A T, Morishita T, Lin C D 2009Phys. Rev. A 79 033409

    [30]

    Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009Phys. Rev. A 80 013401

    [31]

    Smirnova O, Mouritzen A S, Patchkovskii S, Ivanov M Y 2007J. Phys. B:Atomic, Molecular and Optical Physics 40 F197

    [32]

    Brabec T, Ivanov M Y, Corkum P B 1996Phys. Rev. A 54 R2551

    [33]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, D Bauer, Popruzhenko S V, Vrakking M J J 2011Science 331 61

    [34]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016Sci. Reports 6 28392

    [35]

    Smirnova O, Spanner M, Ivanov M 2008Phys. Rev. A 77 033407

    [36]

    Popov V S 1999Physics-Uspekhi 42 733

    [37]

    Perelomov A M, Popov V S, Terent'ev M V 1966JETP 23 924

    [38]

    Popruzhenko S V, Mur V D, Popov V S, Bauer D 2008Phys. Rev. Lett. 101 193003

    [39]

    Kästner A, Saalmann U, Rost J M 2012Phys. Rev. Lett. 108 033201

    [40]

    Kästner A, Saalmann U, Rost J M 2012J. Phys. B:Atomic, Molecular and Optical Physics 45 074011

    [41]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008Phys. Rev. Lett. 101 233001

    [42]

    Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013New J. Phys. 15 013001

  • [1]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008Nat. Phys. 5 335

    [2]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009Phys. Rev. Lett. 103 093001

    [3]

    Liu C, Hatsagortsyan K Z 2010Phys. Rev. Lett. 105 113003

    [4]

    Liu C, Hatsagortsyan K Z 2011J. Phys. B:Atomic, Molecular and Optical Physics 44 095402

    [5]

    Liu C, Hatsagortsyan K Z 2012Phys. Rev. A 85 023413

    [6]

    Paulus G G, Becker W, Nicklich W, Walther H 1994J. Phys. B:Atomic, Molecular and Optical Physics 27 L703

    [7]

    Becker W, Grasbon F, Kopold R, Milošević D, Paulus G, Walther H 2002In Advances in Atomic, Molecular, and Optical Physics (edited by Walther B B A H) (Vol. 48) (Waltham:Academic Press) pp35-98

    [8]

    Miloševic D B, Ehlotzky F 1998J. Phys. B:Atomic, Molecular and Optical Physics 31 4149

    [9]

    Popruzhenko S, Bauer D 2008J. Mod. Opt. 55 2573

    [10]

    Yan T M, Popruzhenko S V, Vrakking M J J, Bauer D 2010Phys. Rev. Lett. 105 253002

    [11]

    Yan T M, Bauer D 2012Phys. Rev. A 86 053403

    [12]

    Wu C Y, Yang Y D, Liu Y Q, Gong Q H, Wu M, Liu X, Hao X L, Li W D, He X T, Chen J 2012Phys. Rev. Lett. 109 043001

    [13]

    Dura J, Camus N, Thai A, Britz A, Hemmer M, Baudisch M, Senftleben A, Schröter C D, Ullrich J, Moshammer R, Biegert J 2013Sci. Reports 3 2675

    [14]

    Pullen M G, Dura J, Wolter B, Baudisch M, Hemmer M, Camus N, Arne Senftleben, Schroeter C D, Moshammer R, Ullrich J, Biegert J 2014J. Phys. B:Atomic, Molecular and Optical Physics 47 204010

    [15]

    Wolter B, Lemell C, Baudisch M, Pullen M G, Tong X M, Hemmer M, Senftleben A, Schröter C D, Ullrich J, Moshammer R, Biegert J, Burgdörfer J 2014Phys. Rev. A 90 063424

    [16]

    Torlina L, Smirnova O 2012Phys. Rev. A 86 043408

    [17]

    Torlina L, Ivanov M, Walters Z B, Smirnova O 2012Phys. Rev. A 86 043409

    [18]

    Pisanty E, Ivanov M 2016Phys. Rev. A 93 043408

    [19]

    Kaushal J, Smirnova O 2013Phys. Rev. A 88 013421

    [20]

    Torlina L, Kaushal J, Smirnova O 2013Phys. Rev. A 88 053403

    [21]

    Smirnova O, Spanner M, Ivanov M 2006J. Phys. B:Atomic, Molecular and Optical Physics 39 S307

    [22]

    Walters Z B, Smirnova O 2010J. Phys. B:Atomic, Molecular and Optical Physics 43 161002

    [23]

    Caillat J, Zanghellini J, Kitzler M, Koch O, Kreuzer W, Scrinzi A 2005Phys. Rev. A 71 012712

    [24]

    Scrinzi A 2010Phys. Rev. A 81 053845

    [25]

    Tao L, Scrinzi A 2012New J. Phys. 14 013021

    [26]

    Kuchiev M Y 1987JETP Lett. 45 404

    [27]

    Corkum P B 1993Phys. Rev. Lett. 71 1994

    [28]

    Yudin G L, Ivanov M Y 2001Phys. Rev. A 63 033404

    [29]

    Chen Z, Le A T, Morishita T, Lin C D 2009Phys. Rev. A 79 033409

    [30]

    Le A T, Lucchese R R, Tonzani S, Morishita T, Lin C D 2009Phys. Rev. A 80 013401

    [31]

    Smirnova O, Mouritzen A S, Patchkovskii S, Ivanov M Y 2007J. Phys. B:Atomic, Molecular and Optical Physics 40 F197

    [32]

    Brabec T, Ivanov M Y, Corkum P B 1996Phys. Rev. A 54 R2551

    [33]

    Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J H, Smolkowska A S, Logman P S W M, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J M, Berden G, Redlich B, van der Meer A F G, Muller H G, Vermin W, Schafer K J, Spanner M, Ivanov M Y, Smirnova O, D Bauer, Popruzhenko S V, Vrakking M J J 2011Science 331 61

    [34]

    Song X, Lin C, Sheng Z, Liu P, Chen Z, Yang W, Hu S, Lin C D, Chen J 2016Sci. Reports 6 28392

    [35]

    Smirnova O, Spanner M, Ivanov M 2008Phys. Rev. A 77 033407

    [36]

    Popov V S 1999Physics-Uspekhi 42 733

    [37]

    Perelomov A M, Popov V S, Terent'ev M V 1966JETP 23 924

    [38]

    Popruzhenko S V, Mur V D, Popov V S, Bauer D 2008Phys. Rev. Lett. 101 193003

    [39]

    Kästner A, Saalmann U, Rost J M 2012Phys. Rev. Lett. 108 033201

    [40]

    Kästner A, Saalmann U, Rost J M 2012J. Phys. B:Atomic, Molecular and Optical Physics 45 074011

    [41]

    Nubbemeyer T, Gorling K, Saenz A, Eichmann U, Sandner W 2008Phys. Rev. Lett. 101 233001

    [42]

    Landsman A S, Pfeiffer A N, Hofmann C, Smolarski M, Cirelli C, Keller U 2013New J. Phys. 15 013001

  • [1] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构. 物理学报, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [2] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [3] 杜文辽, 陶建峰, 巩晓赟, 贡亮, 刘成良. 基于双树复小波变换的非平稳时间序列去趋势波动分析方法. 物理学报, 2016, 65(9): 090502. doi: 10.7498/aps.65.090502
    [4] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [5] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [6] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [7] 徐峰, 郑雨军. 量子相空间纠缠轨线力学. 物理学报, 2013, 62(21): 213401. doi: 10.7498/aps.62.213401
    [8] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [9] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [10] 田原野, 郭福明, 杨玉军. 原子势对阈上电离平台的影响. 物理学报, 2013, 62(7): 073202. doi: 10.7498/aps.62.073202
    [11] 邓善红, 高嵩, 李永平, 裴云昌, 林圣路. 平行电磁场中锂原子自电离的半经典分析. 物理学报, 2010, 59(2): 826-831. doi: 10.7498/aps.59.826
    [12] 王墨戈, 陆启生, 许晓军, 郭少锋. 宽谱染料激光器的数值模型及实验验证. 物理学报, 2008, 57(3): 1857-1861. doi: 10.7498/aps.57.1857
    [13] 何志红, 姚建铨, 时华峰, 黄 晓, 罗锡璋, 江绍基, 李建荣, 王 鹏. 抽运光强度对光学抽运重水气体产生THz激光的影响分析. 物理学报, 2007, 56(11): 6451-6456. doi: 10.7498/aps.56.6451
    [14] 何志红, 姚建铨, 时华锋, 黄 晓, 罗锡璋, 江绍基, 王 鹏. 光泵重水气体产生THz激光的半经典理论分析. 物理学报, 2007, 56(10): 5802-5807. doi: 10.7498/aps.56.5802
    [15] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场. 物理学报, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [16] 仝晓民, 李家明. 强激光场阈上电离理论. 物理学报, 1991, 40(2): 190-197. doi: 10.7498/aps.40.190
    [17] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [18] 李国强, 徐躬耦. 用有限温度自洽半经典方法研究热核上巨共振的性质. 物理学报, 1989, 38(9): 1413-1421. doi: 10.7498/aps.38.1413
    [19] 潘少华, 韩全生. 分布反馈染料激光器的半经典理论. 物理学报, 1982, 31(3): 318-327. doi: 10.7498/aps.31.318
    [20] 潘少华. 染料激光器模式耦合半经典理论. 物理学报, 1981, 30(8): 1067-1076. doi: 10.7498/aps.30.1067
计量
  • 文章访问数:  3173
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-01
  • 刊出日期:  2016-11-05

超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论

    基金项目: 国家重点基础研究发展计划(批准号:2013CB922200)、国家自然科学基金(批准号:11420101003,11274232,11604347,61675213,91636105)和上海科委扬帆计划(批准号:16YF1412600)资助的课题.

摘要: 该综述回顾了近期解析R矩阵方法结合半经典理论的发展,介绍其应用于线偏振光场下单活跃电子系统中的求解强场电离概率幅的过程[Torlina L,Smirnova O 2012 Phys.Rev.A 86 043408].解析R矩阵方法通过内外区域分割,可以获得对外区光电子的半解析描述.内区能够提供良好定义的边界条件,外区光电子波函数则可近似为Eikonal-Volkov解.进一步,使用稳相近似,可以将电离概率幅中的积分近似为半经典轨迹及相应相因子对应的分量之和.基于该方法讨论了不同电离时刻隧穿而出波包的形状,近似表现为以半经典轨线为中心的高斯型.在外光场与库仑势同时存在的情况下,亚周期非绝热修正对电离概率有不同的影响.作为特殊的案例,文中重点讨论在复时间平面上使用纯光驱动轨迹与库仑修正相因子研究光电子返回母核附近发生软回碰过程中的一系列关键环节以及对低能结构的影响[Pisanty E,Ivanov M 2016 Phys.Rev.A 93 043408].在引入库仑势后,使用传统积分曲线存在一定的问题,因积分路径可能遭遇分支-切割面导致积分函数丧失解析性.为了克服该问题,隧穿电离后演化过程的时间被拓展到复平面,电子轨迹允许具有虚部.当回碰发生时,需要谨慎处理复时间平面上的分支-切割面.研究发现,复平面上的导航方法与最接近时间有关,最接近时间总存在于一对分支-切割面之间,它可以帮助规避不连续路径.最接近时间解的集合形成丰富的几何结构,使电子在回碰过程中表现出有趣的性质,与低能结构有关的回碰信息就隐藏在这些几何结构中,我们讨论了最接近时间方程解的拓扑结构随参数的变化以及设计路径搜索算法的依据,介绍了实验上与低能结构相关的可能观测到的现象.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回