搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子势对阈上电离平台的影响

田原野 郭福明 杨玉军

引用本文:
Citation:

原子势对阈上电离平台的影响

田原野, 郭福明, 杨玉军

The effect of atomic potential on the above threshold ionization

Tian Yuan-Ye, Guo Fu-Ming, Yang Yu-Jun
PDF
导出引用
  • 本文从理论上分别研究了长程和短程原子势对阈上电离光电子谱平台结构的影响. 发现在相当大的激光参数范围内, 长程势的阈上电离谱总是呈现出清晰的双平台结构; 对于短程势, 阈上电离谱双平台的界限不再清晰, 随着入射激光强度的减小, 逐渐从双平台过渡到单平台. 基于经典分析和量子力学数值模拟, 阐明了在不同模型势下, 电离速率的差别和再散射电子弹性碰撞截面的不同导致了上述平台结构的差异.此外, 还讨论了激光脉冲空间强度分布对这一现象的影响.
    We investigate theoretically the influence of the long-range and short-range potentials on the plateau structure of the above threshold ionization. In a considerable range of laser parameter, the above threshold ionization spectra of the atoms in the long-range potential always exhibit a clear double-plateau structure; as for the atoms with a short-range potential, the boundary of the double-plateau in photoelectron spectra is no longer clear, and with the decrease of laser intensity, it transits from the double-plateau to the single-plateau gradually. The numerical simulation based on classical analysis and quantum mechanics illustrates that in different model potentials, the distinction of ionization rates as well as the difference of the electronic elastic rescattering cross-sections results in the difference of plateau structures. In addition, the influence of intensity distribution of laser pulse on the phenomenon is discussed.
    • 基金项目: 国家自然科学基金(批准号: 11274141, 11034003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274141, 11034003).
    [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [2]

    Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545

    [3]

    Zhou Z Y, Yuan J M 2007 Chin. Phys. 16 675

    [4]

    Wang B B, Li X F, Gao L H, Fu P M, Guo D S, Freeman R R 2001 Chin. Phys. Lett. 18 1199

    [5]

    Tong X M, Li J M 1991 Acta Phys. Sin. 40 190 (in Chinese) [全晓明, 李家明 1991 物理学报 40 190]

    [6]

    Li Y, Yang S P, Jia X Y, Chen J 2010 Chin. Phys. B 19 043303

    [7]

    Chen B Z 1990 Acta Phys. Sin. 39 40 (in Chinese) [陈宝振 1990 物理学报 39 40]

    [8]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [9]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [10]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [11]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular, and Optical Physics 48 35

    [12]

    Grasbon F, Paulus G G, Walther H, Villoresi P, Sansone G, Stagira S, Nisoli M, Silverstri S 2003 Phys. Rev. Lett. 91 173003

    [13]

    Bauer D 2005 Phys. Rev. Lett. 94 113001

    [14]

    Milosevic D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B 39 R203

    [15]

    Milosevic D B, Hasovic E, Busalazic M, Gazibegovic-busuladizic A, Becker W 2007 Phys. Rev. A 76 053410

    [16]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [17]

    Marchenko T, Mulller H G, Schafer K J, Vrakking M J 2010 J. Phys. B 43 185001

    [18]

    Guo L, Han S S, Chen J 2010 Optics Express 18 1240

    [19]

    Armstrong G S J, Parker J S, Taylor K T 2011 New. J. Phys. 13 013024

    [20]

    Tong X M, Hino K, Toshima N 2008 Phys. Rev. A 74 031405(R)

    [21]

    Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milosevic D B, Muller H G, Vrakking M J J 2008 New. Journal. Phys. 10 025024

    [22]

    Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415

    [23]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [24]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [25]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194

    [26]

    Andriu G, Balciunas T, Alisauskas S, Pugzlys A, Baltuska A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755

    [27]

    Agostini P, DiMauro L F 2008 Contemp. Phys. 49 179

    [28]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Natu. Phys. 5 335

    [29]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [30]

    Liu C P, Nakajima T, Sakka T, Ohgaki H 2008 Phys. Rev. A 77 043411

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [32]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652

    [33]

    Javanainen J, Eberly J H, Su Q 1988 Phys. Rev. A 38 3430

    [34]

    Sprangle P, Penano J R, Hafizi B 2002 Phys. Rev. E 66 046418

    [35]

    Morishita T, Chen Z G, Watanabe S, Lin C D 2007 Phys. Rev. A 75 023407

  • [1]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389

    [2]

    Brabec T, Krauze F 2000 Rev. Mod. Phys. 72 545

    [3]

    Zhou Z Y, Yuan J M 2007 Chin. Phys. 16 675

    [4]

    Wang B B, Li X F, Gao L H, Fu P M, Guo D S, Freeman R R 2001 Chin. Phys. Lett. 18 1199

    [5]

    Tong X M, Li J M 1991 Acta Phys. Sin. 40 190 (in Chinese) [全晓明, 李家明 1991 物理学报 40 190]

    [6]

    Li Y, Yang S P, Jia X Y, Chen J 2010 Chin. Phys. B 19 043303

    [7]

    Chen B Z 1990 Acta Phys. Sin. 39 40 (in Chinese) [陈宝振 1990 物理学报 39 40]

    [8]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599

    [9]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851

    [10]

    Cormier E, Garzella D, Breger P, Agostini P, Cheriaux G, Leblanc C 2001 J. Phys. B 34 L9

    [11]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Advances in Atomic, Molecular, and Optical Physics 48 35

    [12]

    Grasbon F, Paulus G G, Walther H, Villoresi P, Sansone G, Stagira S, Nisoli M, Silverstri S 2003 Phys. Rev. Lett. 91 173003

    [13]

    Bauer D 2005 Phys. Rev. Lett. 94 113001

    [14]

    Milosevic D B, Paulus G G, Bauer D, Becker W 2006 J. Phys. B 39 R203

    [15]

    Milosevic D B, Hasovic E, Busalazic M, Gazibegovic-busuladizic A, Becker W 2007 Phys. Rev. A 76 053410

    [16]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 043421

    [17]

    Marchenko T, Mulller H G, Schafer K J, Vrakking M J 2010 J. Phys. B 43 185001

    [18]

    Guo L, Han S S, Chen J 2010 Optics Express 18 1240

    [19]

    Armstrong G S J, Parker J S, Taylor K T 2011 New. J. Phys. 13 013024

    [20]

    Tong X M, Hino K, Toshima N 2008 Phys. Rev. A 74 031405(R)

    [21]

    Kling M F, Rauschenberger J, Verhoef A J, Hasovic E, Uphues T, Milosevic D B, Muller H G, Vrakking M J J 2008 New. Journal. Phys. 10 025024

    [22]

    Kamta G L, Bandrauk A D 2006 Phys. Rev. A 74 033415

    [23]

    Meckel M, Comtois D, Zeidler D, Staudte A, Pavicic D, Bandulet H C, Pepin H, Kieffer J C, Dorner R, Villeneuve D M, Corkum P B 2008 Science 320 1478

    [24]

    van der Zwan E V, Lein M 2012 Phys. Rev. Lett. 108 043004

    [25]

    Blaga C I, Xu J L, Dichiara A D, Sistrunk E, Zhang K, Agostini P, Miller T A, DiMauro L F, Lin C D 2012 Nature 483 194

    [26]

    Andriu G, Balciunas T, Alisauskas S, Pugzlys A, Baltuska A, Popmintchev T, Chen M C, Murnane M M, Kapteyn H C 2011 Opt. Lett. 36 2755

    [27]

    Agostini P, DiMauro L F 2008 Contemp. Phys. 49 179

    [28]

    Blaga C I, Catoire F, Colosimo P, Paulus G G, Muller H G, Agostini P, DiMauro L F 2009 Natu. Phys. 5 335

    [29]

    Quan W, Lin Z, Wu M, Kang H, Liu H, Liu X, Chen J, Liu J, He X T, Chen S G, Xiong H, Guo L, Xu H, Fu Y, Cheng Y, Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [30]

    Liu C P, Nakajima T, Sakka T, Ohgaki H 2008 Phys. Rev. A 77 043411

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [32]

    Yang Y J, Chen G, Chen J G, Zhu Q R 2004 Chin. Phys. Lett. 21 652

    [33]

    Javanainen J, Eberly J H, Su Q 1988 Phys. Rev. A 38 3430

    [34]

    Sprangle P, Penano J R, Hafizi B 2002 Phys. Rev. E 66 046418

    [35]

    Morishita T, Chen Z G, Watanabe S, Lin C D 2007 Phys. Rev. A 75 023407

  • [1] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构. 物理学报, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [2] 王兴生, 马彦明, 高勋, 林景全. 纳秒脉冲激光诱导空气等离子体的近红外辐射特性. 物理学报, 2020, 69(2): 029502. doi: 10.7498/aps.69.20190753
    [3] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下阈上电离谱鉴别\begin{document}$ \rm H_3^{2+} $\end{document} 两种不同分子构型. 物理学报, 2020, 69(7): 073201. doi: 10.7498/aps.69.20200013
    [4] 黄文逍, 张逸竹, 阎天民, 江玉海. 超快强场下低能光电子的研究进展解析R矩阵半经典轨迹理论. 物理学报, 2016, 65(22): 223204. doi: 10.7498/aps.65.223204
    [5] 郭丽, 韩申生, 陈京. 利用类维格纳分布函数方法研究阈上电离. 物理学报, 2016, 65(22): 223203. doi: 10.7498/aps.65.223203
    [6] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [7] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [8] 田原野, 魏珊珊, 郭福明, 李苏宇, 杨玉军. 共振条件下载波包络相位效应对阈上电离谱的影响. 物理学报, 2013, 62(15): 153202. doi: 10.7498/aps.62.153202
    [9] 曲丕丞, 王卫国, 赵无垛, 张桂秋, 李海洋. 电离效率对激光电离团簇的高价离子产物的影响. 物理学报, 2012, 61(18): 182101. doi: 10.7498/aps.61.182101
    [10] 沈礼, 野仕伟, 戴长建. 电场中Eu原子电离阈移动的实验研究. 物理学报, 2012, 61(6): 063301. doi: 10.7498/aps.61.063301
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] 栾仕霞, 张秋菊, 武慧春, 盛政明. 激光脉冲在等离子体中的压缩分裂. 物理学报, 2008, 57(6): 3646-3652. doi: 10.7498/aps.57.3646
    [13] 晋兴雨, 邱锡钧, 朱志远. 在相对论性激光-等离子体系统中初始物理参数对激光脉冲的影响. 物理学报, 2006, 55(10): 5338-5343. doi: 10.7498/aps.55.5338
    [14] 雍高产, 李宝安, 陈列文, 左 维. 重离子碰撞中的对称势翻转. 物理学报, 2006, 55(10): 5166-5171. doi: 10.7498/aps.55.5166
    [15] 杨 林, 黄维玲, 丘军林, 冯宝华, 张治国, Volker Gaebler, Baining Liu, Hans J.Eichler. Cr4+:YAG被动调Q激光器中受激粒子上转换效应对脉冲的影响研究. 物理学报, 2003, 52(10): 2471-2475. doi: 10.7498/aps.52.2471
    [16] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [17] 仝晓民, 李家明. 强激光场阈上电离理论. 物理学报, 1991, 40(2): 190-197. doi: 10.7498/aps.40.190
    [18] 陈荣清, 徐至展, 姚关华, 余玮. 包含自电离过程的阈上离化. 物理学报, 1990, 39(6): 25-32. doi: 10.7498/aps.39.25
    [19] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [20] 姚关华, 余玮, 徐至展, 陈荣清. 平滑激光脉冲诱导的阈上离化. 物理学报, 1990, 39(1): 35-39. doi: 10.7498/aps.39.35
计量
  • 文章访问数:  3966
  • PDF下载量:  486
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-23
  • 修回日期:  2012-11-29
  • 刊出日期:  2013-04-05

原子势对阈上电离平台的影响

  • 1. 吉林大学原子与分子物理研究所, 长春 130012
    基金项目: 国家自然科学基金(批准号: 11274141, 11034003)资助的课题.

摘要: 本文从理论上分别研究了长程和短程原子势对阈上电离光电子谱平台结构的影响. 发现在相当大的激光参数范围内, 长程势的阈上电离谱总是呈现出清晰的双平台结构; 对于短程势, 阈上电离谱双平台的界限不再清晰, 随着入射激光强度的减小, 逐渐从双平台过渡到单平台. 基于经典分析和量子力学数值模拟, 阐明了在不同模型势下, 电离速率的差别和再散射电子弹性碰撞截面的不同导致了上述平台结构的差异.此外, 还讨论了激光脉冲空间强度分布对这一现象的影响.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回