-
缪子自旋弛豫/旋转技术 (muon spin relaxation/rotation, μSR) 是一种高度灵敏的原子尺度磁性探测手段. 随着μSR技术的不断发展, 其在凝聚态物理研究中愈加重要. 本文简要介绍μSR技术的优越性和独特性, 概述近期μSR技术在凝聚态领域的几项重要进展和挑战, 包括镍基超导体La3Ni2O7和 (R, Sr)NiO2的磁性基态研究、笼目晶格超导体 AV3Sb5 (A = K, Rb)的电荷密度波研究、NaYbSe2量子自旋液体“海洋”中沉浸的自旋“磁滴”和Cr2O3磁电表面附近磁单极子的研究, 并简单阐述了国际上缪子源的建设情况和升级进展.Muon spin relaxation/rotation (μSR) is a highly sensitive technique for investigating magnetic properties on an atomic scale. With the continuous development of this technique, the researches in condensed matter physics have been significantly promoted. Firstly, this article introduces the advantages and uniqueness of μSR technique, followed by several recent progress contributed by μSR in the field of condensed matter physics, including revealing the magnetic ground state of superconducting nickelates La3Ni2O7 and (R, Sr)NiO2, the investigation into the charge density wave in kagome lattice superconductor AV3Sb5 (A = K, Rb), identifying the magnetic droplets immersed in a sea of quantum spin liquid ground state in NaYbSe2, and the exploration of magnetic monopole near a magnetoelectric surface of Cr2O3. Finally, this article summarizes the current construction status and upgrade plans of muon facilities in the world.
-
Keywords:
- muon spin relaxation /rotation /
- magnetism /
- superconductivity /
- quantum spin liquid
[1] Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar
[2] Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar
Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar
[3] Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar
[4] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar
[5] Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar
[6] Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar
[7] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar
[8] Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar
[9] Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar
[10] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar
[11] Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar
[12] Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar
[13] Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar
[14] Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar
[15] Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar
[16] Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar
[17] Rajantie A 2016 Phys. Today 69 40Google Scholar
[18] Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar
[19] Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar
[20] Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar
[21] SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]
[22] FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]
[23] Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]
[24] μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]
[25] Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]
[26] Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030
[27] Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022
[28] Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)
[29] Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar
[30] 彭毅, 赵国强, 邓正, 靳常青 2024 物理学报 73 017503Google Scholar
Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar
[31] McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371
-
图 2 (a) La3Ni2O7中的缪子不对称性参数谱在154 K以下出现了明显的振荡衰减[7]; (b) RbV3Sb5中缪子自旋弛豫率Γ在CDW转变温度$T_1^* 和T_2^*$处明显增强, 表明出现该转变打破时间反演对称[11]; (c) 量子自旋液体“海洋”中沉浸的自旋磁滴[15]; (d) 磁电材料Cr2O3表面上的单个电荷将诱导出表面下的镜像磁单极子, 这一镜像磁单极子又能在表面之上产生理想的单极磁场[20]
Fig. 2. (a) Muon asymmetry spectrum in La3Ni2O7 shows clear oscillations and damping below T = 154 K[7]; (b) muon spin relaxation rate Γ, is strongly enhanced below $T = T_1^*,\;T_2^* $, suggesting the time reversal symmetry broken CDW in RbV3Sb5[11]; (c) magnetic droplets immersed in a sea of quantum spin liquid[15]; (d) a single charge above the surface of magnetoelectric materials, Cr2O3, induces an image monopole beneath the surface, the image monopole then generates an ideal monopolar magnetic field above the surface[20].
表 1 μSR设施的主要参数
Table 1. Main parameters of μSR facilities.
主要参数 PSI TRIUMF ISIS J-PARC CSNS 质子功率/MW 1.4 0.07 0.14 1 0.02 表面缪子流强/s–1 107—109 2×106 107—108 1.5×107 105 自旋极化率/% > 95 > 90 > 90 > 95 95 重复频率/Hz 连续型 连续型 40 25 1—5 不对称性参数A0 0.3 0.28 0.28 0.25 0.32 计数率/(M·h–1·cm–2) ~25 ~15 ~100* ~55 ~20 注: * 100 M/(h·cm2)是ISIS现有谱仪EMU的计数率, 正在改建的Super-MuSR将会使计数率提高到约1400 M/(h·cm2). -
[1] Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar
[2] Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar
Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar
[3] Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar
[4] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar
[5] Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar
[6] Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar
[7] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar
[8] Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar
[9] Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar
[10] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar
[11] Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar
[12] Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar
[13] Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar
[14] Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar
[15] Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar
[16] Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar
[17] Rajantie A 2016 Phys. Today 69 40Google Scholar
[18] Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar
[19] Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar
[20] Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar
[21] SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]
[22] FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]
[23] Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]
[24] μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]
[25] Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]
[26] Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030
[27] Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022
[28] Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)
[29] Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar
[30] 彭毅, 赵国强, 邓正, 靳常青 2024 物理学报 73 017503Google Scholar
Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar
[31] McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371
计量
- 文章访问数: 905
- PDF下载量: 58
- 被引次数: 0