搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基超导体中电荷序的实验研究进展

沈瑶

引用本文:
Citation:

镍基超导体中电荷序的实验研究进展

沈瑶

Experimental research progress of charge order of nickelate based superconductors

Shen Yao
PDF
HTML
导出引用
  • 镍基超导体目前分为一价镍氧化物超导体和高压镍基超导体两个家族, 其中电荷序的研究受到了广泛关注. 这是因为电荷序是强关联电子体系尤其是铜氧化物超导体的研究重点之一, 其不仅对于理解电子关联性有着重要意义, 与非常规超导电性也有着潜在的联系, 而镍基超导体的发现为电荷序与超导电性的研究提供了新的契机. 本文总结了镍基超导体电荷序的实验研究进展, 讨论了镍基超导体中电荷序的存在与否、具体构型以及微观性质等, 以期为进一步深入研究该主题提供新的思路.
    Ever since the discovery, nickelate superconductors have attracted great attention, declaring a “nickel age” of superconductivity. Currently, there are two types of nickelate superconductors: low-valence nickelate superconductors REn+1NinO2n+2 (RE, rare earth; n, number of adjacent NiO2 layers) and high-pressure nickelate superconductors La3Ni2O7 and La4Ni3O10. Charge order plays a crucial role in studying the strongly correlated systems, especially the cuprate superconductors, in which potential correlation between charge order and superconductivity has been indicated. Thus, great efforts have been made to explore the charge order in nickelate superconductors. In the infinite-layer nickelate RENiO2, the evidence of charge order with in-plane wavevector of Q // ≈ (1/3, 0) has been found in the undoped and underdoped regime but not in the superconducting samples. However, subsequent studies have indicated that this is not the true charge order inherent in the NiO2 plane,which carries unconventional superconductivity, but rather originates from the ordered excess top oxygen in the partially reduced impurity phases. On the other hand, the overdoped low-valence nickelate La4Ni3O8 shows well-defined intertwined charge and magnetic order, with an in-plane wavevector of Q // = (1/3, 1/3). X-ray resonant scattering study has found that nickel orbitals play the most important role in the multi-orbital contribution of charge order formation in this material, which is significantly different from the dominant charge order formation of oxygen orbitals in cuprates. Although the spin order in La3Ni2O7 has been well established, there is still controversy over its spin structure and the existence of coexisting charge order. In La4Ni3O10, intertwined charge and spin density waves have been reported, the origin and characteristics of which remain unknown. Owing to the research on the nickelate superconductors just starting, many questions have not yet been answered, and the exploration of charge order in nickelate superconductors will still be the center of superconductor research.
  • 图 1  NdNiO2的电荷序[24] (a) 无限层镍氧化物的还原过程示意图, 从前驱体钙钛矿NdNiO3到无限层NdNiO2之间存在许多中间态, 下方小方块灰色表示钙钛矿结构, 红色表示无限层结构, 蓝色表示具有超结构的中间态; (b)—(d) 样品J的STEM测量结果, 可以看到周期性的顶点氧空位(d), 傅里叶变化之后对应Q// ≈ (1/3, 0)的超结构(b); (e) Q// ≈ (1/3, 0)附近Ni L3边的弹性RXS测量结果, 实线和虚线分别是σ偏振和π偏振的测量曲线, 样品D的数据强度乘了20倍; (f) Nd M5边的弹性RXS测量结果; (g), (h) 样品C和样品D不同Q位置的RXS信号随入射X射线能量的变化, 阴影部分即电荷序信号, 黑色和红色箭头分别标识出了Ni 3d-RE 5d杂化峰和Ni L3主峰; 样品C比样品D含有更多的中间相, 因此超结构峰更强

    Fig. 1.  Charge order in NdNiO2[24]: (a) Schematic of the reduction pathway from the perovskite NdNiO3 (gray) to the infinite-layer NdNiO2 (red) with various intermediate states (blue); (b)–(d) STEM results of sample J, apical oxygen vacancies can be distinguished in panel (d), leading to Q// ≈ (1/3, 0) superlattice peaks in the Fourier transform image (b); (e) elastic RXS measurements at Ni L3 edge around Q// ≈ (1/3, 0), the solid and dashed lines are data with σ and π polarized incident X-ray, respectively; (f) RXS measurements at Nd M5 edge; (g), (h) energy dependence of RXS signals with fixed wavevectors for samples C and D, the shaded region indicates the nominal charge order contributions. The black and red arrows highlight the Ni 3d-RE 5d hybridized peak and the Ni L3 main resonance, respectively, sample C has a larger volume of intermediate states than sample D, leading to stronger superlattice peaks.

    图 2  La4Ni3O8的电荷序[30] (a) La4Ni3O8的3层结构和电荷序与磁有序示意图, 红色和蓝色分别代表自旋向上和向下的S = 1/2 Ni1+离子, 紫色为S = 0 Ni2+离子; (b) 不同温度下电荷序峰的Ni L2边RXS测量曲线; (c) 电荷序RXS信号强度随入射X射线能量的变化, 插图是电荷序在不同原子上的分布; (d) 计算得到的电荷序能量依赖关系, 柱状图显示了不同RXS中间态的贡献

    Fig. 2.  Charge order in La4Ni3O8[30]: (a) Schematic of trilayer structure of La4Ni3O8 and its charge and magnetic order, the red and blue spheres/arrows indicate S = 1/2 Ni1+ ions with spin up and spin down, respectively, while the purple ones indicate S = 0 Ni2+ ions; (b) incident energy dependence of the measured charge order RXS intensity at Ni L2 edge, the inset shows the orbital distribution of the charge order modulation; (c) simulation of the energy dependence of the charge order RXS intensity, the vertical bars represent the weights of different configurations of the RXS intermediate states.

    图 3  La3Ni2O7的条纹序[36] (a) La3Ni2O7的双层晶体结构; (b)—(d) La3Ni2O7可能的3种条纹序构型, 红色、蓝色、黑色圆圈分别表示自旋向下、自旋向上和没有静态磁矩的电荷位置, 方框代表磁胞

    Fig. 3.  Stripe order in La3Ni2O7[36]: (a) Schematic of the bilayer structure of La3Ni2O7; (b)–(d) different stripe order proposed for La3Ni2O7, the red, blue and black circles represent Ni sites with spin down, spin up, and charge with no static moment, the rectangles exhibit the magnetic unit cell.

    图 4  La4Ni3O10的电荷序[45] (a) La4Ni3O10的3层晶体结构; (b), (c) La4Ni3O10一个单独的3层单元内的电荷密度波和自旋密度波示意图

    Fig. 4.  Charge order in La4Ni3O10[45]: (a) Schematic of the trilayer structure of La4Ni3O10; (b), (c) model for the CDW and SDW of La4Ni3O10 in a trilayer unit.

  • [1]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Wang B Y, Lee K, Goodge B H 2024 Annu. Rev. Condens. Matter Phys. 15 305Google Scholar

    [3]

    Sun W J, Jiang Z C, Xia C L, Hao B, Li Y Y, Yan S J, Wang M S, Liu H Q, Ding J Y, Liu J Y, Liu Z Y, Liu J S, Chen H H, Shen D W, Nie Y F 2024 arXiv. 2403.07344v1 [cond-mat]

    [4]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194Google Scholar

    [5]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [6]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [7]

    Hayden S M, Tranquada J M 2024 Annu. Rev. Condens. Matter Phys. 15 215Google Scholar

    [8]

    Hotta T, Dagotto E 2004 Phys. Rev. Lett. 92 227201Google Scholar

    [9]

    Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone D G, Assefa T, Chen X M, Kisslinger K, Prabhakaran D, Boothroyd A T, Tranquada J M, Hu W, Barbour A M, Wilkins S B, Mazzoli C, Robinson I K, Dean M P M 2021 Phys. Rev. Lett. 126 177601Google Scholar

    [10]

    Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S, Chan G K L 2017 Science 358 1155Google Scholar

    [11]

    Huang E W, Mendl C B, Liu S, Johnston S, Jiang H C, Moritz B, Devereaux T P 2017 Science 358 1161Google Scholar

    [12]

    Arpaia R, Ghiringhelli G 2021 J. Phys. Soc. Jpn. 90 111005Google Scholar

    [13]

    Agterberg D F, Davis J C S, Edkins S D, Fradkin E, Van Harlingen D J, Kivelson S A, Lee P A, Radzihovsky L, Tranquada J M, Wang Y 2020 Annu. Rev. Condens. Matter Phys. 11 231Google Scholar

    [14]

    Sears J, Shen Y, Krogstad M J, Miao H, Bozin E S, Robinson I K, Gu G D, Osborn R, Rosenkranz S, Tranquada J M, Dean M P M 2023 Phys. Rev. B 107 115125Google Scholar

    [15]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [16]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [17]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [18]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [19]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [20]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001Google Scholar

    [21]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801.Google Scholar

    [22]

    Peng C, Jiang H C, Moritz B, Devereaux T P, Jia C J 2023 Phys. Rev. B 108 245115Google Scholar

    [23]

    Chen H H, Yang Y F, Zhang G M, Liu H Q 2023 Nat. Commun. 14 5477Google Scholar

    [24]

    Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater. 23 486Google Scholar

    [25]

    Raji A, Krieger G, Viart N, Preziosi D, Rueff J P, Gloter A 2023 Small 19 2304872Google Scholar

    [26]

    Li H, Hao P, Zhang J, Gordon K, Garrison Linn A, Chen X, Zheng H, Zhou X, Mitchell J. F, Dessau D S 2023 Sci. Adv. 9 eade4418Google Scholar

    [27]

    Zhang J J, Chen Y S, Phelan D, Zheng H, Norman M R, Mitchell J F 2016 Proc. Natl. Acad. Sci. 113 8945Google Scholar

    [28]

    Zhang J J, Pajerowski D M, Botana A S, Zheng H, Harriger L, Rodriguez-Rivera J, Ruff J P C, Schreiber N J, Wang B, Chen Y S, Chen W C, Norman M R, Rosenkranz S, Mitchell J F, Phelan D 2019 Phys. Rev. Lett. 122 247201Google Scholar

    [29]

    Zhang J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864Google Scholar

    [30]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Mitrano M, He W, Zhang J, Mitchell J F, Bisogni V, Norman M R, Johnston S, Dean M P M 2023 Phys. Rev. X 13 011021

    [31]

    Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 Phys. Rev. X 12 011055

    [32]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [33]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [34]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [35]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [36]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657v1 [cond-mat]

    [37]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 arXiv: 2401.12635v1 [cond-mat]

    [38]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [39]

    Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 240 2.03952v1 [cond-mat]

    [40]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [41]

    Khasanov R, Hicken T J, Gawryluk D J, Pierre Sorel L, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485v1 [cond-mat]

    [42]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [43]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 arXiv: 2407.05681v1 [cond-mat]

    [44]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Wang M, Hong F, Wang X B, Yu X H 2024 arXiv: 2404.19678v1 [cond-mat]

    [45]

    Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [46]

    Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [47]

    Ren X L, Sutarto R, Gao Q, Wang Q S, Li J R, Wang Y, Xiang T, Hu J P, Chang J, Comin R, Zhou X J, Zhu Z H 2023 arXiv: 2303.02865v2 [cond-mat]

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, doi: 10.7498/aps.73.20240983
    [2] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, doi: 10.7498/aps.72.20231751
    [3] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, doi: 10.7498/aps.70.20201673
    [4] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, doi: 10.7498/aps.69.20201193
    [5] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.67.20181768
    [6] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, doi: 10.7498/aps.67.20181543
    [7] 徐海超, 牛晓海, 叶子荣, 封东来. 铁基超导体系基于电子关联强度的统一相图. 物理学报, doi: 10.7498/aps.67.20181541
    [8] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, doi: 10.7498/aps.64.097503
    [9] 王强. 电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序. 物理学报, doi: 10.7498/aps.64.187501
    [10] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, doi: 10.7498/aps.64.217102
    [11] 王玮, 尹新国. 铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究. 物理学报, doi: 10.7498/aps.63.097401
    [12] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究. 物理学报, doi: 10.7498/aps.60.016102
    [13] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究. 物理学报, doi: 10.7498/aps.60.037402
    [14] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [15] 余旻, 杨宏顺, 柴一晟, 阮可青, 李鹏程, 李志权, 陈兆甲, 曹烈兆. 电子型超导体Sm2-xCexCuO4(0.00≤x≤0.21)的异常热电势与电阻率. 物理学报, doi: 10.7498/aps.51.674
    [16] 王勇刚, 逄焕刚, 刘楣. 高温超导体的电子比热研究. 物理学报, doi: 10.7498/aps.49.548
    [17] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相. 物理学报, doi: 10.7498/aps.48.2364
    [18] 王楠林, 谭明秋, 赵展春, 王劲松, 沙健, 刘先明, 季明荣, 张其瑞. YBa2Cu3O7超导体中空穴状态的X射线光电子能谱研究. 物理学报, doi: 10.7498/aps.40.821
    [19] 雷啸霖. 电荷密度波超导体中的软声子和喇曼散射. 物理学报, doi: 10.7498/aps.32.1292
    [20] 于渌, 陈肖兰. 杂质散射对各向异性超导体的影响. 物理学报, doi: 10.7498/aps.21.471
计量
  • 文章访问数:  141
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-28
  • 修回日期:  2024-08-19
  • 上网日期:  2024-08-27

/

返回文章
返回