搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La3Ni2O7中近邻库仑相互作用诱导的电荷序

杜政忠 李婕 卢毅

引用本文:
Citation:

La3Ni2O7中近邻库仑相互作用诱导的电荷序

杜政忠, 李婕, 卢毅
cstr: 32037.14.aps.74.20250604

Charge order driven by nonlocal coulomb interactions in La3Ni2O7

DU Zhengzhong, LI Jie, LU Yi
cstr: 32037.14.aps.74.20250604
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Ruddlesden-Popper型双层镍酸盐材料La3Ni2O7在高压(>14 GPa)下表现出约80 K的超导转变温度($T_{\mathrm{c}}$), 引起了广泛关注[1]. 该材料独特的双层结构赋予其不同于铜基超导体的电子结构特性, 其超导机理具有重要的研究价值. 实验发现该体系中存在电荷密度波与自旋密度波序, 可能与超导态存在竞争关系, 深入探究其形成机制对于理解该体系的超导本质具有重要意义. 本工作结合密度泛函理论与动力学平均场理论(DFT+DMFT), 在包含两个子格点Ni-eg轨道的低能有效模型基础上, 引入Hartree平均场处理近邻格点间库仑相互作用, 系统研究了非局域库仑相互作用对电荷有序行为与电子关联效应的影响. 计算结果表明, 当$V \leqslant $$ V_{{\mathrm{c}}1} \approx 0.46$eV时, 体系保持子格点对称性, 谱函数无显著变化; 当$V > V_{{\mathrm{c}}1}$时, 子格点对称性破缺, 体系进入电荷有序相, 且谱函数发生明显的重构. 进一步增大$V$至$V_{{\mathrm{c}}2} \approx 0.63$ eV后, 体系进入完全极化态, 其中一个子格点近乎空, 占据主要集中于另一子格点, 后者接近3/4填充. 本研究揭示了近邻库仑相互作用在驱动电荷不均匀分布及调控电子关联中的关键作用, 为全面理解La3Ni2O7中的低能有序态提供了新的视角.
    The bilayer nickelate La3Ni2O7, a member of the Ruddlesden–Popper series, has recently received significant attention due to its superconductivity under high pressure (above 14 GPa) with a transition temperature of approximately 80 K. Its unique bilayer structure results in an electronic configuration significantly different from those observed in cuprates and infinite-layer nickelates. Consequently, understanding its correlated electronic structure and superconducting mechanism has become a topic of major scientific importance. Recent experimental observations have further identified the coexistence of charge and spin density wave orders in La3Ni2O7, suggesting a complex interplay between various competing electronic phases and superconductivity.In this work, the charge order in La3Ni2O7 is investigated using a low-energy effective model that explicitly includes the Ni-eg orbitals. By employing a combined density functional theory and dynamical mean-field theory (DFT+DMFT) framework, the influences of the nearest-neighbor Coulomb interaction V on charge ordering and electronic correlation effects are investigated, with nonlocal interactions treated at the Hartree approximation level. Our computational method features a newly developed tensor-network impurity solver, in which a natural-orbital basis and complex-time evolution are utilized, facilitating efficient and accurate evaluation of the Green's function on the real-frequency axis. Our analysis indicates that for interaction strengths below a critical value ($ V \leqslant V_{{\mathrm{c}}1} \approx 0.46 $ eV), the system retains sublattice symmetry, resulting in minimal changes of the spectral function. Several high-energy fine structures identified within the Hubbard bands correspond to the residual atomic multiplet excitations, enabling the extraction of effective Hubbard parameters. When $ V>V_{{\mathrm{c}}1} $, the sublattice symmetry is disrupted and the system transitions to a charge-ordered state. Spectral features systematically evolve with the increase of charge order, providing a clear benchmark for quantitatively evaluating the degree of charge disproportionation based on experimental data. The quasiparticle weight Z exhibits a nonmonotonic behavior with the increase of V, reaching a minimum value of nearly $ V \approx 0.60 $ eV in the more populated sublattice as it approaches half-filling. When the interaction further increases beyond $ V_{{\mathrm{c}}2} \approx 0.63 $ eV, the system becomes fully charged polarized, characterized by one sublattice becoming almost empty and the other substance being nearly three-quarters filled.These findings underscore the critical role of nonlocal Coulomb interactions in driving charge disproportionation and regulating electron correlation, thereby providing new insights into the low-energy ordering phenomena of bilayer nickelates.
      通信作者: 卢毅, yilu@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1403000)和国家自然科学基金(批准号: 12274207)资助的课题.
      Corresponding author: LU Yi, yilu@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1403000) and the National Natural Science Foundation of China (Grant No. 12274207)
    [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [2]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [3]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [4]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [5]

    Botana A S, Norman M R 2020 Phys. Rev. X 10 011024

    [6]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [7]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [8]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [9]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [10]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv: 2309.17279 [cond-mat.str-el]

    [11]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [12]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [13]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105Google Scholar

    [14]

    Wu W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron 67 117402Google Scholar

    [15]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [16]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [17]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2023 arXiv: 2306.07275 [cond-mat.supr-con]

    [18]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [19]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [20]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [21]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [22]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [23]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [24]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [25]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [26]

    Wang Y X, Zhang Y, Jiang K 2025 Chin. Phys. B 34 047105Google Scholar

    [27]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [28]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [29]

    Ghiringhelli G, Le Tacon M, Minola M, BlancoCanosa S, Mazzoli C, Brookes N, De Luca G, Frano A, Hawthorn D, He F Z, Loew T, Moretti Sala M, Peets D, Salluzzo M, Schierle E, Sutarto R, Sawatzky G, Weschke E, Keimer B, Braicovich L 2012 Science 337 821Google Scholar

    [30]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [31]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, GarcíaFernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [32]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [33]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [34]

    Seo D K, Liang W, Whangbo M H, Zhang Z, Greenblatt M 1996 Inorg. Chem. 35 6396Google Scholar

    [35]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [36]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [37]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [38]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys.Sin. 73 197104Google Scholar

    [39]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [40]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar

    [41]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [42]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, García-Fernández M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [43]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [44]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [45]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [46]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [47]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [48]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [49]

    Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H, Verstraete F 2011 Phys. Rev. Lett. 107 070601Google Scholar

    [50]

    Haegeman J, Mariën M, Osborne T J, Verstraete F 2014 J. Math. Phys. 55 021902Google Scholar

    [51]

    Lu Y, Höppner M, Gunnarsson O, Haverkort M W 2014 Phys. Rev. B 90 085102Google Scholar

    [52]

    Lu Y, Cao X D, Hansmann P, Haverkort M W 2019 Phys. Rev. B 100 115134Google Scholar

    [53]

    Cao X D, Lu Y, Hansmann P, Haverkort M W 2021 Phys. Rev. B 104 115119Google Scholar

    [54]

    Cao X D, Lu Y, Stoudenmire E M, Parcollet O 2024 Phys. Rev. B 109 235110Google Scholar

    [55]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [57]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [58]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [59]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [60]

    Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein A I 2004 Phys. Rev. B 70 195104Google Scholar

    [61]

    Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A 2011 Phys. Rev. Lett. 106 096401Google Scholar

    [62]

    Kugler F B, Zingl M, Strand H U R, Lee S S B, von Delft J, Georges A 2020 Phys. Rev. Lett. 124 016401Google Scholar

    [63]

    Georges A, Medici L d, Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137Google Scholar

  • 图 1  (a) DFT能带结构与Wannier投影低能能带(黑色实线)对比; (b) 轨道分辨的态密度

    Fig. 1.  (a) Comparison between the DFT band structure and the low-energy Wannier-projected bands (black solid lines); (b) orbital-resolved density of states.

    图 2  $ V=0 $时 (a) 谱函数, 插图展示了谱函数中多重激发态特征结构的细节; (b)自能实部; (c) 自能虚部; (b), (c)虚线展示了两个轨道$ {\rm{Re}}\varSigma(\omega) \sim {\rm{Re}}\varSigma(0) + (1 - 1/Z)\omega $的线性拟合

    Fig. 2.  For $ V=0 $: (a) Spectral function, inset shows the details of the multiplet excitations features; (b) real part of self energy; (c) imaginary part of self energy; dashed lines in (b), (c) show the linear fits of $ {\rm{Re}}\varSigma(\omega) \sim {\rm{Re}}\varSigma(0) + (1 - 1/Z)\omega $.

    图 3  子格点密度极化$ n_{{\rm{diff}}} $随近邻相互作用强度V的变化

    Fig. 3.  Sublattice density polarization $ n_{{\rm{diff}}} $ as a function of nearest-neighbor interaction V.

    图 4  $ V=0 $与$ V=0.46 $的谱函数对比

    Fig. 4.  Comparison of spectral functions for $ V=0 $ and $ V=0.46 $.

    图 5  谱函数在参数区间$ 0.48 \leqslant V \leqslant 0.56 $内的演化

    Fig. 5.  Spectral functions in the parameter range $ 0.48 \leqslant V \leqslant 0.56 $.

    图 6  代表性V值的谱函数(上)与自能(下), 其中A(B)为多数(少数)占据格点, 内嵌图展示了下Hubbard带多峰结构的细节

    Fig. 6.  Spectral functions (top) and self energies (bottom) for representative values of V, where A(B) denotes the majority (minority) occupied sublattice. Insets show the details of the lower Hubbard band features.

    图 7  重整化因子ZV增大的演化

    Fig. 7.  Evolution of renormalization factor with increasing V

  • [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [2]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [3]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [4]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [5]

    Botana A S, Norman M R 2020 Phys. Rev. X 10 011024

    [6]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [7]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [8]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [9]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [10]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv: 2309.17279 [cond-mat.str-el]

    [11]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [12]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [13]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105Google Scholar

    [14]

    Wu W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron 67 117402Google Scholar

    [15]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [16]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [17]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2023 arXiv: 2306.07275 [cond-mat.supr-con]

    [18]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [19]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [20]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [21]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [22]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [23]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [24]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [25]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [26]

    Wang Y X, Zhang Y, Jiang K 2025 Chin. Phys. B 34 047105Google Scholar

    [27]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [28]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [29]

    Ghiringhelli G, Le Tacon M, Minola M, BlancoCanosa S, Mazzoli C, Brookes N, De Luca G, Frano A, Hawthorn D, He F Z, Loew T, Moretti Sala M, Peets D, Salluzzo M, Schierle E, Sutarto R, Sawatzky G, Weschke E, Keimer B, Braicovich L 2012 Science 337 821Google Scholar

    [30]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar

    [31]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, GarcíaFernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar

    [32]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar

    [33]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644Google Scholar

    [34]

    Seo D K, Liang W, Whangbo M H, Zhang Z, Greenblatt M 1996 Inorg. Chem. 35 6396Google Scholar

    [35]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [36]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [37]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [38]

    沈瑶 2024 物理学报 73 197104Google Scholar

    Shen Y 2024 Acta Phys.Sin. 73 197104Google Scholar

    [39]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [40]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar

    [41]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [42]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, García-Fernández M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [43]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [44]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [45]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [46]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [47]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [48]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259Google Scholar

    [49]

    Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H, Verstraete F 2011 Phys. Rev. Lett. 107 070601Google Scholar

    [50]

    Haegeman J, Mariën M, Osborne T J, Verstraete F 2014 J. Math. Phys. 55 021902Google Scholar

    [51]

    Lu Y, Höppner M, Gunnarsson O, Haverkort M W 2014 Phys. Rev. B 90 085102Google Scholar

    [52]

    Lu Y, Cao X D, Hansmann P, Haverkort M W 2019 Phys. Rev. B 100 115134Google Scholar

    [53]

    Cao X D, Lu Y, Hansmann P, Haverkort M W 2021 Phys. Rev. B 104 115119Google Scholar

    [54]

    Cao X D, Lu Y, Stoudenmire E M, Parcollet O 2024 Phys. Rev. B 109 235110Google Scholar

    [55]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [57]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [58]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar

    [59]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109Google Scholar

    [60]

    Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein A I 2004 Phys. Rev. B 70 195104Google Scholar

    [61]

    Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A 2011 Phys. Rev. Lett. 106 096401Google Scholar

    [62]

    Kugler F B, Zingl M, Strand H U R, Lee S S B, von Delft J, Georges A 2020 Phys. Rev. Lett. 124 016401Google Scholar

    [63]

    Georges A, Medici L d, Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137Google Scholar

  • [1] 陈萤, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展. 物理学报, 2025, 74(8): 087402. doi: 10.7498/aps.74.20241402
    [2] 李义典, 杨乐仙. 层状镍基超导体的电子结构和超快动力学. 物理学报, 2025, 74(17): 177402. doi: 10.7498/aps.74.20250856
    [3] 沈瑶. 镍基超导体中电荷序的实验研究进展. 物理学报, 2024, 73(19): 197104. doi: 10.7498/aps.73.20240898
    [4] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学. 物理学报, 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [5] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [6] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究. 物理学报, 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [7] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [8] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [9] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型. 物理学报, 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [10] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [11] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [12] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究. 物理学报, 2010, 59(12): 8776-8782. doi: 10.7498/aps.59.8776
    [13] 耿翠玉, 王崇愚, 朱 弢. 镍基单晶高温合金γ/γ′(001)相界面上原子构型的分子动力学研究. 物理学报, 2005, 54(3): 1320-1324. doi: 10.7498/aps.54.1320
    [14] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [15] 石宏霆, 倪军, 顾秉林. 二维合金系统的有序动力学研究. 物理学报, 2001, 50(10): 1970-1978. doi: 10.7498/aps.50.1970
    [16] 丁弘, 程兆年. RbCl键取向序的分子动力学模拟. 物理学报, 1995, 44(7): 1081-1090. doi: 10.7498/aps.44.1081
    [17] 王顺金. 多体关联动力学中的自洽平均场. 物理学报, 1988, 37(6): 881-891. doi: 10.7498/aps.37.881
    [18] 樊永年. 硫在镍(100)表面偏析动力学研究. 物理学报, 1986, 35(12): 1640-1645. doi: 10.7498/aps.35.1640
    [19] 杨正举. AB合金有序化过程的动力学(Ⅰ). 物理学报, 1965, 21(2): 369-382. doi: 10.7498/aps.21.369
    [20] 施士元;洪永炎. AuCu_3恒温有序转变动力学. 物理学报, 1956, 12(6): 559-576. doi: 10.7498/aps.12.559
计量
  • 文章访问数:  567
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-05-27
  • 上网日期:  2025-06-04
  • 刊出日期:  2025-09-05

/

返回文章
返回