搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La3Ni2O7中近邻库仑相互作用诱导的电荷序研究

杜政忠 李婕 卢毅

引用本文:
Citation:

La3Ni2O7中近邻库仑相互作用诱导的电荷序研究

杜政忠, 李婕, 卢毅

Charge Order Driven by Nonlocal Coulomb Interactions in La3Ni2O7

DU Zhengzhong, LI Jie, LU Yi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • Ruddlesden-Popper型双层镍酸盐材料La3Ni2O7在高压(>14 GPa)下表现出约80 K的超导转变温度(Tc),引起了广泛关注[1]。该材料独特的双层结构赋予其不同于铜基超导体的电子结构特性,其超导机理具有重要的研究价值。实验发现该体系中存在电荷密度波与自旋密度波序,可能与超导态存在竞争关系,深入探究其形成机制对于理解该体系的超导本质具有重要意义。本工作结合密度泛函理论与动力学平均场理论(DFT+DMFT),在包含两个子格点Ni-eg轨道的低能有效模型基础上,引入Hartree平均场处理近邻格点间库仑相互作用,系统研究了非局域库仑相互作用对电荷有序行为与电子关联效应的影响。计算结果表明,当VVc1 ≈ 0.46 eV时,体系保持子格点对称性,谱函数无显著变化;当V > Vc1时,子格点对称性破缺,体系进入电荷有序相,且谱函数发生明显的重构。进一步增大V至Vc2 ≈ 0.63 eV后,体系进入完全极化态,其中一个子格点近乎空,占据主要集中于另一子格点,后者接近3/4填充。本研究揭示了近邻库仑相互作用在驱动电荷不均匀分布及调控电子关联中的关键作用,为全面理解La3Ni2O7中的低能有序态提供了新的视角。
    The bilayer nickelate La3Ni2O7, a member of the Ruddlesden–Popper series, has recently garnered significant attention due to its superconductivity under high pressure (above 14 GPa) with a transition temperature of approximately 80 K [1]. Its unique bilayer structure results in an electronic configuration significantly distinct from those observed in cuprates and infinite-layer nickelates. Consequently, understanding its correlated electronic structure and superconducting mechanism has emerged as a topic of major scientific importance. Recent experimental observations have further identified the coexistence of charge and spin density wave orders in La3Ni2O7, suggesting a complex interplay among various competing electronic phases and superconductivity.
    In this work, we investigate the charge order in La3Ni2O7 using a low-energy effective model that explicitly includes the Ni-eg orbitals. By employing a combined density functional theory and dynamical mean-field theory (DFT+DMFT) framework, we systematically explore the impact of the nearest-neighbor Coulomb interaction V on charge ordering and electronic correlation effects, with nonlocal interactions treated at the Hartree approximation level. Our computational methodology features a newly developed tensor-network impurity solver utilizing a natural-orbital basis and complex-time evolution, facilitating effcient and precise evaluations of the Green’s function on the real-frequency axis.
    Our analysis reveals that for interaction strengths below a critical value (VVc1 ≈ 0.46 eV), the system maintains sublattice symmetry, resulting in minimal changes to the spectral function. Several high-energy fine structures identified within the Hubbard bands correspond to remnants of atomic multiplet excitations, allowing extraction of effective Hubbard parameters. When V > Vc1, the sublattice symmetry breaks, and the system transitions into a charge-ordered state. Spectral features evolve systematically with increasing charge order, providing a clear benchmark to quantitatively assess the degree of charge disproportionation against experimental data. The quasiparticle weight Z exhibits a nonmonotonic behavior with increasing V , reaching a minimum near V ≈ 0.60 eV in the more populated sublattice as it approaches half-filling. Upon further increasing the interaction beyond Vc2 ≈ 0.63 eV, the system becomes fully charge polarized, characterized by one sublattice becoming nearly empty and the other approaching three-quarter filling.
    These findings underscore the critical role of nonlocal Coulomb interactions in driving charge disproportionation and tuning electronic correlations, thereby offering fresh insights into the low-energy ordering phenomena of bilayer nickelates.
  • [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [2]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [3]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [4]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [5]

    Botana A S, Norman M R 2020 Phys. Rev. X 10 011024

    [6]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001

    [7]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510

    [8]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501

    [9]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511

    [10]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv:2309.17279 [cond-mat.str-el]

    [11]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121

    [12]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502

    [13]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105

    [14]

    Wu W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron 67 117402

    [15]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108

    [16]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105

    [17]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con]

    [18]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [19]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401

    [20]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505

    [21]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [22]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002

    [23]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514

    [24]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402

    [25]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054

    [26]

    Wang Y X, Zhang Y, Jiang K 2025 Chin. Phys. B 34 047105

    [27]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301

    [28]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403

    [29]

    Ghiringhelli G, Le Tacon M, Minola M, BlancoCanosa S, Mazzoli C, Brookes N, De Luca G, Frano A, Hawthorn D, He F Z, Loew T, Moretti Sala M, Peets D, Salluzzo M, Schierle E, Sutarto R, Sawatzky G, Weschke E, Keimer B, Braicovich L 2012 Science 337 821

    [30]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002

    [31]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, GarcíaFernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116

    [32]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869

    [33]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644

    [34]

    Seo D K, Liang W, Whangbo M H, Zhang Z, Greenblatt M 1996 Inorg. Chem. 35 6396

    [35]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120

    [36]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411

    [37]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570

    [38]

    Shen Y 2024 Acta Phys.Sin. 73 197104(in Chinese) [沈瑶 2024 物理学报 73 197104]

    [39]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239

    [40]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702

    [41]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503

    [42]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, García-Fernández M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597

    [43]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [44]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269

    [45]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122

    [46]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508

    [47]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515

    [48]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259

    [49]

    Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H, Verstraete F 2011 Phys. Rev. Lett. 107 070601

    [50]

    Haegeman J, Mariën M, Osborne T J, Verstraete F 2014 J. Math. Phys. 55 021902

    [51]

    Lu Y, Höppner M, Gunnarsson O, Haverkort M W 2014 Phys. Rev. B 90 085102

    [52]

    Lu Y, Cao X D, Hansmann P, Haverkort M W 2019 Phys. Rev. B 100 115134

    [53]

    Cao X D, Lu Y, Hansmann P, Haverkort M W 2021 Phys. Rev. B 104 115119

    [54]

    Cao X D, Lu Y, Stoudenmire E M, Parcollet O 2024 Phys. Rev. B 109 235110

    [55]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [57]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [58]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [59]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [60]

    Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein A I 2004 Phys. Rev. B 70 195104

    [61]

    Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A 2011 Phys. Rev. Lett. 106 096401

    [62]

    Kugler F B, Zingl M, Strand H U R, Lee S S B, von Delft J, Georges A 2020 Phys. Rev. Lett. 124 016401

    [63]

    Georges A, Medici L d, Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137

  • [1] 李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升. 无限层镍基超导薄膜界面结构的电子显微学研究. 物理学报, doi: 10.7498/aps.74.20250171
    [2] 陈萤, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展. 物理学报, doi: 10.7498/aps.74.20241402
    [3] 沈瑶. 镍基超导体中电荷序的实验研究进展. 物理学报, doi: 10.7498/aps.73.20240898
    [4] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学. 物理学报, doi: 10.7498/aps.72.20230842
    [5] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, doi: 10.7498/aps.72.20230701
    [6] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究. 物理学报, doi: 10.7498/aps.71.20220286
    [7] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, doi: 10.7498/aps.69.20201193
    [8] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, doi: 10.7498/aps.67.20181543
    [9] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型. 物理学报, doi: 10.7498/aps.66.030501
    [10] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, doi: 10.7498/aps.60.026101
    [11] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.046104
    [12] 王宇杰, 周俊敏, 钱萍, 申江. 镍基超导母体材料EuNi2Si2的结构和热力学性质研究. 物理学报, doi: 10.7498/aps.59.8776
    [13] 耿翠玉, 王崇愚, 朱 弢. 镍基单晶高温合金γ/γ′(001)相界面上原子构型的分子动力学研究. 物理学报, doi: 10.7498/aps.54.1320
    [14] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
    [15] 石宏霆, 倪军, 顾秉林. 二维合金系统的有序动力学研究. 物理学报, doi: 10.7498/aps.50.1970
    [16] 丁弘, 程兆年. RbCl键取向序的分子动力学模拟. 物理学报, doi: 10.7498/aps.44.1081
    [17] 王顺金. 多体关联动力学中的自洽平均场. 物理学报, doi: 10.7498/aps.37.881
    [18] 樊永年. 硫在镍(100)表面偏析动力学研究. 物理学报, doi: 10.7498/aps.35.1640
    [19] 杨正举. AB合金有序化过程的动力学(Ⅰ). 物理学报, doi: 10.7498/aps.21.369
    [20] 施士元;洪永炎. AuCu_3恒温有序转变动力学. 物理学报, doi: 10.7498/aps.12.559
计量
  • 文章访问数:  38
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回