搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层镍氧化物La3Ni2O7超导体理论研究近期进展与展望

郑姚远 莫世聪 吴为

引用本文:
Citation:

双层镍氧化物La3Ni2O7超导体理论研究近期进展与展望

郑姚远, 莫世聪, 吴为
cstr: 32037.14.aps.74.20250711

Recent advances and prospects in theoretical study of bilayer nickelate superconductor La3Ni2O7

ZHENG Yaoyuan, MO Shicong, WU Wei
cstr: 32037.14.aps.74.20250711
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 2023年, 具有双层镍氧面结构的La3Ni2O7单晶在高压下被发现具有高温超导电性. 随后, 大量理论与数值计算研究工作涌现, 旨在阐明这一新型高温超导体在不同方面的物理特性及其超导机理, 并据此探索和预测新型镍基高温超导材料. 由于La3Ni2O7镍氧化合物具有多轨道自由度的特征, 其电子关联效应复杂, 物理学家对其超导配对起源的理解存在分歧, 目前多种超导理论并存. 本文综述La3Ni2O7镍氧化物在理论和数值计算方面的若干近期进展, 并讨论其一些基本物性和可能的超导机理.
    The high-temperature superconductivity in bilayer nickelate La3Ni2O7 under high pressures, which was discovered in 2023, has spurred intensive theoretical and numerical investigations. These studies aim to unravel physical properties of La3Ni2O7 from various aspects, with particular emphasis on its pairing symmetry and underlying superconducting mechanism. Moreover, significant effort has also been made to explore and predict novel nickel-based superconductors related to La3Ni2O7. This article reviews these recent advancements aimed at elucidating the physical properties and superconducting mechanism of La3Ni2O7, whose multi-orbital characteristics and intricate electronic correlations have spawned diverse theories for its pairing mechanism. In this article, the recent findings on La3Ni2O7 are summarized regarding its macroscopic models, pairing symmetry, normal state characteristics, and the structure of spin and charge density waves. Particular attention is paid to the debate surrounding the role of σ-bonding band metallization in superconductivity. Finally, this article also presents an outlook on future studies crucial for advancing our understanding of La3Ni2O7 superconductivity.
      通信作者: 吴为, wuwei69@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12494594)和广东省量子科学战略专项(批准号: GDZX2401010)资助的课题.
      Corresponding author: WU Wei, wuwei69@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12494594) and the Guangdong Provincial Strategic Research Program in Quantum Science, China (Grant No. GDZX2401010).
    [1]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [4]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [5]

    Marsiglio F 2020 Ann. Phys. 417 168102Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [8]

    胡江平 2021 物理学报 70 017101Google Scholar

    Hu J P 2021 Acta Phys. Sin. 70 017101Google Scholar

    [9]

    李建新 2021 物理学报 70 017408Google Scholar

    Li J X 2021 Acta Phys. Sin. 70 017408Google Scholar

    [10]

    Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826Google Scholar

    [11]

    Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118Google Scholar

    [12]

    Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13Google Scholar

    [13]

    Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar

    [14]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719Google Scholar

    [16]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [17]

    Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504Google Scholar

    [18]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    周兴江, 赵忠贤 1994 物理 23 205

    Zhou X J, Zhao Z X 1994 Physics 23 205

    [20]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [21]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [22]

    Chow S L E, Luo Z, Ariando A 2025 Nature 642 58Google Scholar

    [23]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [24]

    李庆, 闻海虎 2022 物理 51 633Google Scholar

    Li Q, Wen H H 2022 Physics 51 633Google Scholar

    [25]

    Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501Google Scholar

    [26]

    Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157Google Scholar

    [27]

    Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119Google Scholar

    [28]

    Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511Google Scholar

    [29]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220Google Scholar

    [30]

    Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208Google Scholar

    [31]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195Google Scholar

    [32]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [33]

    Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128Google Scholar

    [34]

    Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411Google Scholar

    [35]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [36]

    霍梦五, 王猛 2025 物理实验 45 1Google Scholar

    Huo M W, Wang M 2025 Phys. Exp. 45 1Google Scholar

    [37]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [38]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [39]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [40]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [41]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [42]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [43]

    Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111Google Scholar

    [44]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [45]

    Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [46]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [47]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [48]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [49]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [50]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [51]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [52]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [53]

    Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507Google Scholar

    [54]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [55]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [56]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [57]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [58]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [59]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [60]

    Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]

    [61]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]

    [62]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [63]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [64]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [65]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [66]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [67]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [68]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [69]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [70]

    Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]

    [71]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [72]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [73]

    Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520Google Scholar

    [74]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]

    [75]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [76]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [77]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [78]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [79]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [80]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [81]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253Google Scholar

    [82]

    Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708Google Scholar

    [83]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]

    [84]

    Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113Google Scholar

    [85]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [86]

    Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004Google Scholar

    [87]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [88]

    Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061Google Scholar

    [89]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [90]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [91]

    Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [92]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [93]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [94]

    Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502Google Scholar

    [95]

    Hu J, Ding H 2012 Sci. Rep. 2 381Google Scholar

    [96]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [97]

    Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513Google Scholar

    [98]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [99]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [100]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [101]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [102]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [103]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [104]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [105]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [106]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [107]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506Google Scholar

    [108]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [109]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412Google Scholar

    [110]

    Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36Google Scholar

    [111]

    Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [112]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [113]

    Kivelson S A 2002 Phys. B: Condens. Matter 318 61Google Scholar

    [114]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [115]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [116]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [117]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [118]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [119]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [120]

    Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]

    [121]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [122]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [123]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3Google Scholar

    [124]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [125]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180Google Scholar

    [126]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [127]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [128]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [129]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [130]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [131]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [132]

    Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [133]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [134]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [135]

    Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]

    [136]

    Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038Google Scholar

    [137]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [138]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]

    [139]

    Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]

    [140]

    Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]

  • 图 1  (a)铜氧化物YBa2Cu3O7–x (YBCO)超导体的晶体结构; (b)镍氧化物La3Ni2O7超导体的晶体结构; (c) La3Ni2O7超导体压力下的超导相图[29]

    Fig. 1.  (a) Crystal structure of the copper oxide superconductor YBa2Cu3O7–x (YBCO); (b) crystal structure of the nickel oxide superconductor La3Ni2O7; (c) superconducting phase diagram of La3Ni2O7 under pressure[29].

    图 2  La3Ni2O7的电子轨道结构与能带 (a) La3Ni2O7的双层NiO2面结构示意图, 红色图形代表$3{\mathrm{d}}_{z^2} $轨道, 蓝色图形代表$3{\mathrm{d}}_{x^2- y^2} $轨道, 在此图中几个重要的电子跃迁被标识出来, V代表面内$3{\mathrm{d}}_{x^2- y^2} $轨道和$3{\mathrm{d}}_{z^2} $轨道的杂化, t代表$3{\mathrm{d}}_{z^2} $电子之间的层间跃迁, $ {t}_{x}^{1} $是$3{\mathrm{d}}_{x^2- y^2} $电子面内最近邻跃迁, $ {t}_{z}^{1} $是$3{\mathrm{d}}_{z^2} $电子面内最近邻跃迁; (b) DFT计算得到的高压下的低能能带结构和(c) 高压下的费米面[75], 红色代表来自$3{\mathrm{d}}_{x^2- y^2} $轨道对能带的贡献, 而蓝色代表$3{\mathrm{d}}_{z^2} $轨道的贡献; 结果显示, 在高压下γ能带出现在费米面上, 即σ成键能带金属化

    Fig. 2.  Electronic orbital structure and dispersion relation of La3Ni2O7: (a) Schematic of the NiO2 bilayer structure of La3Ni2O7, the red and blue shapes denote the $3{\mathrm{d}}_{z^2} $ and $3{\mathrm{d}}_{x^2- y^2} $ orbitals, respectively, several key electron hopping terms are labeled: V denotes hybridization between the in-plane $3{\mathrm{d}}_{x^2- y^2} $ and $3{\mathrm{d}}_{z^2} $ orbitals, t represents the interlayer hopping of $3{\mathrm{d}}_{z^2} $ electrons, $ {t}_{x}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{x^2- y^2} $ electrons, and $ {t}_{z}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{z^2} $ electrons; (b) low-energy band structure of La3Ni2O7 under high pressure (>14 GPa) obtained from DFT calculations; (c) Fermi surface under high pressure[75]; In panels (b), (c), warm colors indicate the contribution of the $3{\mathrm{d}}_{x^2- y^2} $ orbitals to the energy bands, while cool colors represent the contribution of the $3{\mathrm{d}}_{z^2} $ orbitals. Results shown here demonstrate that under high pressure, the γ band crosses Fermi level, indicating the metallization of the σ-bonding band.

    图 3  Mott-Hubbard 绝缘体和charge-transfer绝缘体示意图 (a) 大U极限下的Mott-Hubbard绝缘体; (b) 大U极限下的charge-transfer 绝缘体; (c) 在实际材料中考虑掺杂形成d-p关联电子态的电荷转移型关联电子能态, 在费米面附近, Zhang-Rice单态能带出现, 其中UHB代表上哈伯德带, LHB代表下哈伯德带, CTB代表电荷转移带, ZRSB代表Zhang-Rice单线带, EF代表费米能级, Δ表示电荷转移能隙

    Fig. 3.  Schematic plots depicting the Mott-Hubbard insulators and charge-transfer insulators: (a) Mott-Hubbard insulator in the large-U limit; (b) charge-transfer insulator in the large-U limit; (c) charge-transfer type correlated electronic states in real materials, here the doping induced d-p correlated electronic states are considered, near Fermi level, the Zhang-Rice singlet band emerges. UHB represents upper Hubbard band. LHB represents lower Hubbard band. CTB represents charge-transfer band. ZRSB represents Zhang-Rice singlet band, EF represents Fermi level and Δ denotes the charge-transfer gap.

    图 4  一些不同超导对称性的配对能隙函数投影到La3Ni2O7费米面上的图示 (a) s±波, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±波, (c) ${\mathrm{d}}_{x^2- y^2} $波, 红色表示正的配对能隙符号, 蓝色表示负的配对能隙符号, 白色代表配对能隙为零的节点区域; 注意当系统有多种不同实空间电子配对键(pairing bonds)共存时, 能隙函数可能会比图示的更复杂, 能隙节点的位置也可能变化[109]

    Fig. 4.  Projection of pairing gap functions with different symmetries onto the Fermi surface of La3Ni2O7: (a) s±-wave, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±-wave, (c) ${\mathrm{d}}_{x^2- y^2} $-wave; here warm colors represent positive pairing gap sign, and cool colors represents negative pairing gap sign, the white regions denote gap nodes where pairing gap vanishes. Note that the gap function may become more complicated than illustrated, when multiple real-space electron pairing bonds coexist, potentially altering the positions of the gap nodes[109].

  • [1]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [4]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [5]

    Marsiglio F 2020 Ann. Phys. 417 168102Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [8]

    胡江平 2021 物理学报 70 017101Google Scholar

    Hu J P 2021 Acta Phys. Sin. 70 017101Google Scholar

    [9]

    李建新 2021 物理学报 70 017408Google Scholar

    Li J X 2021 Acta Phys. Sin. 70 017408Google Scholar

    [10]

    Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826Google Scholar

    [11]

    Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118Google Scholar

    [12]

    Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13Google Scholar

    [13]

    Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar

    [14]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719Google Scholar

    [16]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [17]

    Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504Google Scholar

    [18]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    周兴江, 赵忠贤 1994 物理 23 205

    Zhou X J, Zhao Z X 1994 Physics 23 205

    [20]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [21]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [22]

    Chow S L E, Luo Z, Ariando A 2025 Nature 642 58Google Scholar

    [23]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [24]

    李庆, 闻海虎 2022 物理 51 633Google Scholar

    Li Q, Wen H H 2022 Physics 51 633Google Scholar

    [25]

    Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501Google Scholar

    [26]

    Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157Google Scholar

    [27]

    Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119Google Scholar

    [28]

    Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511Google Scholar

    [29]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220Google Scholar

    [30]

    Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208Google Scholar

    [31]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195Google Scholar

    [32]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [33]

    Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128Google Scholar

    [34]

    Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411Google Scholar

    [35]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [36]

    霍梦五, 王猛 2025 物理实验 45 1Google Scholar

    Huo M W, Wang M 2025 Phys. Exp. 45 1Google Scholar

    [37]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [38]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [39]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [40]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [41]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [42]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [43]

    Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111Google Scholar

    [44]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [45]

    Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [46]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [47]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [48]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [49]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [50]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [51]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [52]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [53]

    Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507Google Scholar

    [54]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [55]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [56]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [57]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [58]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [59]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [60]

    Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]

    [61]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]

    [62]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [63]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [64]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [65]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [66]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [67]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [68]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [69]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [70]

    Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]

    [71]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [72]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [73]

    Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520Google Scholar

    [74]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]

    [75]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [76]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [77]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [78]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [79]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [80]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [81]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253Google Scholar

    [82]

    Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708Google Scholar

    [83]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]

    [84]

    Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113Google Scholar

    [85]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [86]

    Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004Google Scholar

    [87]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [88]

    Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061Google Scholar

    [89]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [90]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [91]

    Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [92]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [93]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [94]

    Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502Google Scholar

    [95]

    Hu J, Ding H 2012 Sci. Rep. 2 381Google Scholar

    [96]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [97]

    Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513Google Scholar

    [98]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [99]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [100]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [101]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [102]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [103]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [104]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [105]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [106]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [107]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506Google Scholar

    [108]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [109]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412Google Scholar

    [110]

    Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36Google Scholar

    [111]

    Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [112]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [113]

    Kivelson S A 2002 Phys. B: Condens. Matter 318 61Google Scholar

    [114]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [115]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [116]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [117]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [118]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [119]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [120]

    Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]

    [121]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [122]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [123]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3Google Scholar

    [124]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [125]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180Google Scholar

    [126]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [127]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [128]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [129]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [130]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [131]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [132]

    Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [133]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [134]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [135]

    Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]

    [136]

    Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038Google Scholar

    [137]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [138]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]

    [139]

    Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]

    [140]

    Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]

  • [1] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望. 物理学报, 2025, 74(9): 097401. doi: 10.7498/aps.74.20250331
    [2] 向涛. 高温超导: 推动量子多体理论革命的引擎. 物理学报, 2025, 74(7): 077403. doi: 10.7498/aps.74.20250313
    [3] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展. 物理学报, 2025, 74(8): 087401. doi: 10.7498/aps.74.20241778
    [4] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [5] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [6] 叶鹏. 具有全局对称性的强关联拓扑物态的规范场论. 物理学报, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 衣玮, 吴奇, 孙力玲. 压力下铁砷基化合物的超导电性研究. 物理学报, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [9] 段德芳, 马艳斌, 邵子霁, 谢慧, 黄晓丽, 刘冰冰, 崔田. 高压下富氢化合物的结构与奇异超导电性. 物理学报, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [10] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [11] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [12] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [13] 吴建宝. 层状铜氧化物超导体的有限温Landau理论. 物理学报, 2006, 55(4): 2049-2056. doi: 10.7498/aps.55.2049
    [14] 张永健, 陈仙辉, 陈兆甲, 曹烈兆, 戚伯云. Bi-1212相和Bi-1222相铜氧化合物的合成和超导电性. 物理学报, 1995, 44(6): 922-928. doi: 10.7498/aps.44.922
    [15] 易林. 电-声超导电性的对称理论. 物理学报, 1994, 43(9): 1523-1530. doi: 10.7498/aps.43.1523
    [16] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, 1994, 43(7): 1152-1158. doi: 10.7498/aps.43.1152
    [17] 夏健生, 曹烈兆, 徐成, 王顺喜, 陈健, 陈祖耀, 张其瑞. (Bi,Pb)4Ca3Sr3Cu4Oy系统的超导电性与相结构的关联. 物理学报, 1989, 38(6): 1026-1029. doi: 10.7498/aps.38.1026
    [18] 赵勇, 张酣, 孙式方, 孙敦明, 喻道奇, 余维潮, 陈祖耀, 张其瑞. YBa2-xSrxCu3O7-δ系统的超导电性与结构的关联. 物理学报, 1988, 37(6): 1042-1047. doi: 10.7498/aps.37.1042
    [19] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响. 物理学报, 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [20] 雷啸霖. 强交换场中无隙超导电性的Eliashberg方程研究. 物理学报, 1984, 33(2): 266-272. doi: 10.7498/aps.33.266
计量
  • 文章访问数:  798
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-03
  • 修回日期:  2025-07-10
  • 上网日期:  2025-08-09
  • 刊出日期:  2025-09-05

/

返回文章
返回