-
The high-temperature superconductivity in bilayer nickelate La3Ni2O7 under high pressures, which was discovered in 2023, has spurred intensive theoretical and numerical investigations. These studies aim to unravel physical properties of La3Ni2O7 from various aspects, with particular emphasis on its pairing symmetry and underlying superconducting mechanism. Moreover, significant effort has also been made to explore and predict novel nickel-based superconductors related to La3Ni2O7. This article reviews these recent advancements aimed at elucidating the physical properties and superconducting mechanism of La3Ni2O7, whose multi-orbital characteristics and intricate electronic correlations have spawned diverse theories for its pairing mechanism. In this article, the recent findings on La3Ni2O7 are summarized regarding its macroscopic models, pairing symmetry, normal state characteristics, and the structure of spin and charge density waves. Particular attention is paid to the debate surrounding the role of σ-bonding band metallization in superconductivity. Finally, this article also presents an outlook on future studies crucial for advancing our understanding of La3Ni2O7 superconductivity.
-
Keywords:
- nickelate /
- unconventional superconductivity /
- theory of superconductivity /
- strongly correlated systems
[1] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
Google Scholar
[2] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[3] Migdal A 1958 Sov. Phys. JETP 7 996
[4] Eliashberg G 1960 Sov. Phys. JETP 11 696
[5] Marsiglio F 2020 Ann. Phys. 417 168102
Google Scholar
[6] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56
Google Scholar
[7] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260
Google Scholar
[8] 胡江平 2021 物理学报 70 017101
Google Scholar
Hu J P 2021 Acta Phys. Sin. 70 017101
Google Scholar
[9] 李建新 2021 物理学报 70 017408
Google Scholar
Li J X 2021 Acta Phys. Sin. 70 017408
Google Scholar
[10] Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826
Google Scholar
[11] Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118
Google Scholar
[12] Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13
Google Scholar
[13] Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012
Google Scholar
[14] Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901
Google Scholar
[15] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719
Google Scholar
[16] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117
Google Scholar
[17] Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504
Google Scholar
[18] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[19] 周兴江, 赵忠贤 1994 物理 23 205
Zhou X J, Zhao Z X 1994 Physics 23 205
[20] Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801
Google Scholar
[21] Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927
Google Scholar
[22] Chow S L E, Luo Z, Ariando A 2025 Nature 642 58
Google Scholar
[23] Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027
Google Scholar
[24] 李庆, 闻海虎 2022 物理 51 633
Google Scholar
Li Q, Wen H H 2022 Physics 51 633
Google Scholar
[25] Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501
Google Scholar
[26] Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157
Google Scholar
[27] Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119
Google Scholar
[28] Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511
Google Scholar
[29] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220
Google Scholar
[30] Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208
Google Scholar
[31] Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195
Google Scholar
[32] Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105
Google Scholar
[33] Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128
Google Scholar
[34] Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411
Google Scholar
[35] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[36] 霍梦五, 王猛 2025 物理实验 45 1
Google Scholar
Huo M W, Wang M 2025 Phys. Exp. 45 1
Google Scholar
[37] Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411
Google Scholar
[38] Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640
Google Scholar
[39] Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001
Google Scholar
[40] Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001
Google Scholar
[41] LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151
Google Scholar
[42] Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020
Google Scholar
[43] Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111
Google Scholar
[44] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[45] Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510
Google Scholar
[46] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[47] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
Google Scholar
[48] Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401
Google Scholar
[49] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531
Google Scholar
[50] Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003
Google Scholar
[51] Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403
Google Scholar
[52] Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008
Google Scholar
[53] Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507
Google Scholar
[54] Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]
[55] Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]
[56] Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221
Google Scholar
[57] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[58] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[59] Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205
Google Scholar
[60] Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]
[61] Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]
[62] Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251
Google Scholar
[63] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503
Google Scholar
[64] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597
Google Scholar
[65] Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430
Google Scholar
[66] Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239
Google Scholar
[67] Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408
Google Scholar
[68] Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221
Google Scholar
[69] Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801
Google Scholar
[70] Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]
[71] Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431
Google Scholar
[72] Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402
Google Scholar
[73] Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520
Google Scholar
[74] Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]
[75] Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001
Google Scholar
[76] 高淼, 卢仲毅, 向涛 2015 物理 44 421
Google Scholar
Gao M, Lu Z Y, Xiang T 2015 Physics 44 421
Google Scholar
[77] Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401
Google Scholar
[78] Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122
Google Scholar
[79] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
Google Scholar
[80] Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501
Google Scholar
[81] Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253
Google Scholar
[82] Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708
Google Scholar
[83] Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]
[84] Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113
Google Scholar
[85] Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109
Google Scholar
[86] Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004
Google Scholar
[87] Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402
Google Scholar
[88] Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061
Google Scholar
[89] Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114
Google Scholar
[90] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570
Google Scholar
[91] Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17
Google Scholar
[92] Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515
Google Scholar
[93] Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027
Google Scholar
[94] Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502
Google Scholar
[95] Hu J, Ding H 2012 Sci. Rep. 2 381
Google Scholar
[96] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470
Google Scholar
[97] Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513
Google Scholar
[98] Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505
Google Scholar
[99] Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002
Google Scholar
[100] Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501
Google Scholar
[101] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502
Google Scholar
[102] Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403
Google Scholar
[103] Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506
Google Scholar
[104] Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002
Google Scholar
[105] Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121
Google Scholar
[106] Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508
Google Scholar
[107] Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506
Google Scholar
[108] Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054
Google Scholar
[109] Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412
Google Scholar
[110] Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36
Google Scholar
[111] Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61
Google Scholar
[112] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108
Google Scholar
[113] Kivelson S A 2002 Phys. B: Condens. Matter 318 61
Google Scholar
[114] Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108
Google Scholar
[115] Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002
Google Scholar
[116] Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514
Google Scholar
[117] Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511
Google Scholar
[118] Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503
Google Scholar
[119] Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402
Google Scholar
[120] Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]
[121] Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80
Google Scholar
[122] Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508
Google Scholar
[123] You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3
Google Scholar
[124] Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002
Google Scholar
[125] Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180
Google Scholar
[126] Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505
Google Scholar
[127] Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504
Google Scholar
[128] Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411
Google Scholar
[129] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506
Google Scholar
[130] Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801
Google Scholar
[131] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141
Google Scholar
[132] Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111
Google Scholar
[133] Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401
Google Scholar
[134] Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38
Google Scholar
[135] Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]
[136] Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038
Google Scholar
[137] Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154
Google Scholar
[138] Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]
[139] Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]
[140] Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]
-
图 1 (a)铜氧化物YBa2Cu3O7–x (YBCO)超导体的晶体结构; (b)镍氧化物La3Ni2O7超导体的晶体结构; (c) La3Ni2O7超导体压力下的超导相图[29]
Fig. 1. (a) Crystal structure of the copper oxide superconductor YBa2Cu3O7–x (YBCO); (b) crystal structure of the nickel oxide superconductor La3Ni2O7; (c) superconducting phase diagram of La3Ni2O7 under pressure[29].
图 2 La3Ni2O7的电子轨道结构与能带 (a) La3Ni2O7的双层NiO2面结构示意图, 红色图形代表$3{\mathrm{d}}_{z^2} $轨道, 蓝色图形代表$3{\mathrm{d}}_{x^2- y^2} $轨道, 在此图中几个重要的电子跃迁被标识出来, V代表面内$3{\mathrm{d}}_{x^2- y^2} $轨道和$3{\mathrm{d}}_{z^2} $轨道的杂化, t⊥代表$3{\mathrm{d}}_{z^2} $电子之间的层间跃迁, $ {t}_{x}^{1} $是$3{\mathrm{d}}_{x^2- y^2} $电子面内最近邻跃迁, $ {t}_{z}^{1} $是$3{\mathrm{d}}_{z^2} $电子面内最近邻跃迁; (b) DFT计算得到的高压下的低能能带结构和(c) 高压下的费米面[75], 红色代表来自$3{\mathrm{d}}_{x^2- y^2} $轨道对能带的贡献, 而蓝色代表$3{\mathrm{d}}_{z^2} $轨道的贡献; 结果显示, 在高压下γ能带出现在费米面上, 即σ成键能带金属化
Fig. 2. Electronic orbital structure and dispersion relation of La3Ni2O7: (a) Schematic of the NiO2 bilayer structure of La3Ni2O7, the red and blue shapes denote the $3{\mathrm{d}}_{z^2} $ and $3{\mathrm{d}}_{x^2- y^2} $ orbitals, respectively, several key electron hopping terms are labeled: V denotes hybridization between the in-plane $3{\mathrm{d}}_{x^2- y^2} $ and $3{\mathrm{d}}_{z^2} $ orbitals, t⊥ represents the interlayer hopping of $3{\mathrm{d}}_{z^2} $ electrons, $ {t}_{x}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{x^2- y^2} $ electrons, and $ {t}_{z}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{z^2} $ electrons; (b) low-energy band structure of La3Ni2O7 under high pressure (>14 GPa) obtained from DFT calculations; (c) Fermi surface under high pressure[75]; In panels (b), (c), warm colors indicate the contribution of the $3{\mathrm{d}}_{x^2- y^2} $ orbitals to the energy bands, while cool colors represent the contribution of the $3{\mathrm{d}}_{z^2} $ orbitals. Results shown here demonstrate that under high pressure, the γ band crosses Fermi level, indicating the metallization of the σ-bonding band.
图 3 Mott-Hubbard 绝缘体和charge-transfer绝缘体示意图 (a) 大U极限下的Mott-Hubbard绝缘体; (b) 大U极限下的charge-transfer 绝缘体; (c) 在实际材料中考虑掺杂形成d-p关联电子态的电荷转移型关联电子能态, 在费米面附近, Zhang-Rice单态能带出现, 其中UHB代表上哈伯德带, LHB代表下哈伯德带, CTB代表电荷转移带, ZRSB代表Zhang-Rice单线带, EF代表费米能级, Δ表示电荷转移能隙
Fig. 3. Schematic plots depicting the Mott-Hubbard insulators and charge-transfer insulators: (a) Mott-Hubbard insulator in the large-U limit; (b) charge-transfer insulator in the large-U limit; (c) charge-transfer type correlated electronic states in real materials, here the doping induced d-p correlated electronic states are considered, near Fermi level, the Zhang-Rice singlet band emerges. UHB represents upper Hubbard band. LHB represents lower Hubbard band. CTB represents charge-transfer band. ZRSB represents Zhang-Rice singlet band, EF represents Fermi level and Δ denotes the charge-transfer gap.
图 4 一些不同超导对称性的配对能隙函数投影到La3Ni2O7费米面上的图示 (a) s±波, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±波, (c) ${\mathrm{d}}_{x^2- y^2} $波, 红色表示正的配对能隙符号, 蓝色表示负的配对能隙符号, 白色代表配对能隙为零的节点区域; 注意当系统有多种不同实空间电子配对键(pairing bonds)共存时, 能隙函数可能会比图示的更复杂, 能隙节点的位置也可能变化[109]
Fig. 4. Projection of pairing gap functions with different symmetries onto the Fermi surface of La3Ni2O7: (a) s±-wave, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±-wave, (c) ${\mathrm{d}}_{x^2- y^2} $-wave; here warm colors represent positive pairing gap sign, and cool colors represents negative pairing gap sign, the white regions denote gap nodes where pairing gap vanishes. Note that the gap function may become more complicated than illustrated, when multiple real-space electron pairing bonds coexist, potentially altering the positions of the gap nodes[109].
-
[1] Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189
Google Scholar
[2] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[3] Migdal A 1958 Sov. Phys. JETP 7 996
[4] Eliashberg G 1960 Sov. Phys. JETP 11 696
[5] Marsiglio F 2020 Ann. Phys. 417 168102
Google Scholar
[6] Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56
Google Scholar
[7] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260
Google Scholar
[8] 胡江平 2021 物理学报 70 017101
Google Scholar
Hu J P 2021 Acta Phys. Sin. 70 017101
Google Scholar
[9] 李建新 2021 物理学报 70 017408
Google Scholar
Li J X 2021 Acta Phys. Sin. 70 017408
Google Scholar
[10] Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826
Google Scholar
[11] Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118
Google Scholar
[12] Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13
Google Scholar
[13] Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012
Google Scholar
[14] Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901
Google Scholar
[15] Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719
Google Scholar
[16] Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117
Google Scholar
[17] Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504
Google Scholar
[18] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[19] 周兴江, 赵忠贤 1994 物理 23 205
Zhou X J, Zhao Z X 1994 Physics 23 205
[20] Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801
Google Scholar
[21] Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927
Google Scholar
[22] Chow S L E, Luo Z, Ariando A 2025 Nature 642 58
Google Scholar
[23] Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027
Google Scholar
[24] 李庆, 闻海虎 2022 物理 51 633
Google Scholar
Li Q, Wen H H 2022 Physics 51 633
Google Scholar
[25] Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501
Google Scholar
[26] Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157
Google Scholar
[27] Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119
Google Scholar
[28] Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511
Google Scholar
[29] Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220
Google Scholar
[30] Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208
Google Scholar
[31] Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195
Google Scholar
[32] Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105
Google Scholar
[33] Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128
Google Scholar
[34] Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411
Google Scholar
[35] Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402
Google Scholar
[36] 霍梦五, 王猛 2025 物理实验 45 1
Google Scholar
Huo M W, Wang M 2025 Phys. Exp. 45 1
Google Scholar
[37] Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411
Google Scholar
[38] Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640
Google Scholar
[39] Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001
Google Scholar
[40] Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001
Google Scholar
[41] LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151
Google Scholar
[42] Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020
Google Scholar
[43] Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111
Google Scholar
[44] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[45] Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510
Google Scholar
[46] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[47] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
Google Scholar
[48] Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401
Google Scholar
[49] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531
Google Scholar
[50] Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003
Google Scholar
[51] Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403
Google Scholar
[52] Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008
Google Scholar
[53] Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507
Google Scholar
[54] Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]
[55] Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]
[56] Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221
Google Scholar
[57] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[58] Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[59] Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205
Google Scholar
[60] Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]
[61] Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]
[62] Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251
Google Scholar
[63] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503
Google Scholar
[64] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597
Google Scholar
[65] Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430
Google Scholar
[66] Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239
Google Scholar
[67] Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408
Google Scholar
[68] Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221
Google Scholar
[69] Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801
Google Scholar
[70] Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]
[71] Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431
Google Scholar
[72] Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402
Google Scholar
[73] Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520
Google Scholar
[74] Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]
[75] Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001
Google Scholar
[76] 高淼, 卢仲毅, 向涛 2015 物理 44 421
Google Scholar
Gao M, Lu Z Y, Xiang T 2015 Physics 44 421
Google Scholar
[77] Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401
Google Scholar
[78] Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122
Google Scholar
[79] Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373
Google Scholar
[80] Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501
Google Scholar
[81] Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253
Google Scholar
[82] Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708
Google Scholar
[83] Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]
[84] Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113
Google Scholar
[85] Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109
Google Scholar
[86] Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004
Google Scholar
[87] Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402
Google Scholar
[88] Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061
Google Scholar
[89] Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114
Google Scholar
[90] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570
Google Scholar
[91] Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17
Google Scholar
[92] Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515
Google Scholar
[93] Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027
Google Scholar
[94] Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502
Google Scholar
[95] Hu J, Ding H 2012 Sci. Rep. 2 381
Google Scholar
[96] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470
Google Scholar
[97] Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513
Google Scholar
[98] Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505
Google Scholar
[99] Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002
Google Scholar
[100] Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501
Google Scholar
[101] Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502
Google Scholar
[102] Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403
Google Scholar
[103] Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506
Google Scholar
[104] Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002
Google Scholar
[105] Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121
Google Scholar
[106] Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508
Google Scholar
[107] Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506
Google Scholar
[108] Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054
Google Scholar
[109] Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412
Google Scholar
[110] Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36
Google Scholar
[111] Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61
Google Scholar
[112] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108
Google Scholar
[113] Kivelson S A 2002 Phys. B: Condens. Matter 318 61
Google Scholar
[114] Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108
Google Scholar
[115] Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002
Google Scholar
[116] Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514
Google Scholar
[117] Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511
Google Scholar
[118] Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503
Google Scholar
[119] Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402
Google Scholar
[120] Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]
[121] Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80
Google Scholar
[122] Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508
Google Scholar
[123] You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3
Google Scholar
[124] Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002
Google Scholar
[125] Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180
Google Scholar
[126] Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505
Google Scholar
[127] Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504
Google Scholar
[128] Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411
Google Scholar
[129] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506
Google Scholar
[130] Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801
Google Scholar
[131] Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141
Google Scholar
[132] Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111
Google Scholar
[133] Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401
Google Scholar
[134] Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38
Google Scholar
[135] Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]
[136] Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038
Google Scholar
[137] Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154
Google Scholar
[138] Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]
[139] Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]
[140] Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]
计量
- 文章访问数: 798
- PDF下载量: 14
- 被引次数: 0