搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三种原位原子氢还原手段对无限层镍氧化物超导体的优化研

郭楠 安志彤 陈志辉 丁翔 李迟昊 樊钰 徐海超 彭瑞

引用本文:
Citation:

三种原位原子氢还原手段对无限层镍氧化物超导体的优化研

郭楠, 安志彤, 陈志辉, 丁翔, 李迟昊, 樊钰, 徐海超, 彭瑞

Optimization of Infinite-Layer Nickelate Superconductors via Three In Situ Atomic Hydrogen Reduction Methods

GUO Nan, AN Zhitong, CHEN Zhihui, DING Xiang, LI Chihao, FAN Yu, XU Haichao, PENG Rui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,无限层镍氧化物薄膜作为首个实现超导电性的镍氧化物体系,引起研究者广泛关注.该材料通过将钙钛矿结构前驱体去除顶角氧获得.传统的CaH2封管还原法虽简单有效,但属于非原位手段且容易造成表面非晶化,不适用于表面敏感实验的研究.为了解决该问题,本文在超高真空腔体中建立了三种不同的原位原子氢还原方式(科研用射频等离子体裂解源、工业用射频等离子体裂解源和热裂解源),系统探索各自的最优还原条件,并比较不同还原方式对薄膜表面形貌和超导转变温度等性质的影响.多种原位还原方式的优化和对比对于进一步提升无限层镍氧化物的表面质量及超导性能至关重要.结果表明,三种原位手段在降低薄膜表面粗糙度方面相比于CaH2还原表现出优势,工业用射频等离子体裂解源和热裂解源可实现优于CaH2的超导性能.研究还系统介绍了各还原方式的参数优化结果,为实现高质量无限层镍氧化物薄膜的可控还原提供了重要参考.
    Infinite-layer nickelates, obtained by removing the apical oxygen from perovskite precursors, are the first nickelate system to exhibit superconductivity and provide a platform for exploring unconventional superconductivity. Although the traditional CaH2 sealed-tube reduction method is simple and effective, it is an ex-situ process that tends to cause surface contamination or degradation, making it unsuitable for surfacesensitive measurements like ARPES. To address this issue, we established three different in-situ atomic hydrogen reduction methods in an ultrahigh vacuum chamber-namely, a lab-based RF plasma cracker, an industrial RF plasma cracker, and a thermal gas cracker. Comprehensive optimization of key parameters-including hydrogen flow, RF power or filament temperature, reduction temperature, and time-was carried out for each method. Structural evolution was monitored by X-ray diffraction (XRD), surface morphology was characterized by atomic force microscopy (AFM), and superconducting properties were examined through electrical transport measurements. The results demonstrate that all three in-situ methods can achieve reduction and superconducting properties comparable to or better than CaH2 reduction. Moreover, all atomic hydrogen approaches yield lower surface roughness than CaH2 from the same precursor, highlighting their clear advantage in enhancing surface flatness. Notably, the industrial RF plasma source, owing to its higher hydrogen production efficiency, enables sufficient reduction under milder conditions, resulting in even smoother surfaces. This study also provides a detailed summary of the parameter optimization for each method, offering valuable guidance for the controlled reduction of high-quality infinite-layer nickelate thin films.
  • [1]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [2]

    Norman M R 2016 Rep. Prog. Phys. 79 074502

    [3]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901

    [4]

    Lee K-W, Pickett W E 2004 Phys. Rev. B 70 165109

    [5]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [6]

    Poltavets V V, Lokshin K A, Dikmen S, Croft M, Egami T, Greenblatt M 2006 J. Am. Chem. Soc. 128 9050

    [7]

    Poltavets V V, Lokshin K A, Nevidomskyy A H, Croft M, Tyson T A, Hadermann J, Tendeloo G V, Egami T, Kotliar G 2010 Phys. Rev. Lett. 104 206403

    [8]

    Li D F 2021 Sci. Sin. Phys. Mech. 51 047405 (in Chinese) [李丹枫 2021 中国科学: 物理学 力学 天文学 51 047405]

    [9]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102

    [10]

    Crespin M, Levitz P, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 79 1181

    [11]

    Levitz P, Crespin M, Gatineau L 1983 J. Chem. Soc. Faraday Trans. 79 1195

    [12]

    Hayward M A, Green M A, Rosseinsky M J, Sloan J 1999 J. Am. Chem. Soc. 121 8843

    [13]

    Hayward M A, Rosseinsky M J 2003 Solid State Sci. 5 839

    [14]

    Li Q, He C, Si J, Zhu X, Zhang Y, Wen H H 2020 Commun. Mater. 1 16

    [15]

    Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Phelan D 2020 Phys. Rev. Mater. 4 084409.

    [16]

    Catalano S, Gibert M, Fowlie J, Íñiguez J, Triscone J-M, Kreisel J 2018 Rep. Prog. Phys. 81 046501

    [17]

    Yamamoto T,Kageyama H. 2013 Chem. Lett. 42 946

    [18]

    Wei W, Shin K, Hong H, Shin Y, Thind A S, Yang Y, Klie R F, Walker F J, Ahn C H 2023 Phys. Rev. Mater. 7 013802

    [19]

    Wei W, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327

    [20]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194

    [21]

    Parzyck C T, Anil V, Wu Y, Goodge B H, Roddy M, Kourkoutis L F, Schlom D G, Shen K M 2024 APL Mater. 12 031132

    [22]

    Sun W, Wang Z, Hao B, Yan S, Sun H, Gu Z, Deng Y, Nie Y 2024 Adv. Mater. 36 2401342

    [23]

    Sun W, Jiang Z, Xia C, Hao B, Wang M, Liu H, Ding J, Liu J, Liu Z, Liu J, Chen H, Shen D, Nie Y 2025 Sci. Adv. 11 eadr5116

    [24]

    Zeng S, Tang C S, Luo Z, Chow L E, Lim Z S, Prakash S, Yang P, Diao C, Yu X, Xing Z 2024 Phys. Rev. Lett. 133 066503

    [25]

    Han K, Xie M, Mei Y, Lin R, Xu L, Chen P, Yin P, Zeng S, Ge B, Ariando A, Song D, Wang X R, Wu W, Huang Z 2023 Appl. Phys. Lett. 123 182601

    [26]

    Nomura Y, Arita R 2022 Rep. Prog. Phys. 85 052501

    [27]

    Kitatani M, Si L, Janson O, Arita R, Zhong Z, Held K, 2020 npj Quantum Mater. 5 59

    [28]

    Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, Hwang H Y 2020 APL Mater. 8 041107

    [29]

    Tonks L, Langmuir I 1929 Phys. Rev. 34 876

    [30]

    Hemke T, Eremin D, Mussenbrock T, Derzsi A, Donkó Z, Dittmann K, Meichsner J, Schulze J 2013 Plasma Sources Sci. Technol. 22 015012

    [31]

    Satritama B, Cooper C, Fellicia D, Pownceby M I, Palanisamy S, Ang A, Mukhlis R Z, Pye J, Rahbari A, Brooks G A, Rhamdhani M A 2024 J. Sustain. Metall. 10 1845

    [32]

    Tschersich K, Fleischhauer J, Schuler H 2008 J. Appl. Phys. 104 034908

    [33]

    Sun W, Li Y, Liu R, Yang J, Li J, Wei W, Jin G, Yan S, Sun H, Guo W, Gu Z, Zhu Z, Sun Y, Shi Z, Deng Y, Wang X, Nie Y 2023 Adv. Mater. 35 e2303400

    [34]

    Puphal P, Pomjakushin V, Ortiz R A, Hammoud S, Isobe M, Keimer B, Hepting M 2022 Front. Phys. 10 842578

    [35]

    Li Y, Sun W, Yang J, Cai X, Guo W, Gu Z, Zhu Y, Nie Y 2021 Front. Phys. 9 719534

  • [1] 李泊玉, 胡柯钧, 林仁菊, 韩昆, 黄振, 葛炳辉, 宋东升. 无限层镍基超导薄膜界面结构的电子显微学研究. 物理学报, doi: 10.7498/aps.74.20250171
    [2] 陈卓昱, 黄浩亮, 薛其坤. 常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望. 物理学报, doi: 10.7498/aps.74.20250331
    [3] 陈萤, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展. 物理学报, doi: 10.7498/aps.74.20241402
    [4] 郑姚远, 莫世聪, 吴为. 双层镍氧化物La3Ni2O7超导体理论研究近期进展与展望. 物理学报, doi: 10.7498/aps.74.20250711
    [5] 薛子威, 袁登鹏, 谭世勇. 新型非常规超导体UTe2的单晶生长方法研究进展. 物理学报, doi: 10.7498/aps.74.20241778
    [6] 李建新. 自旋涨落与非常规超导配对. 物理学报, doi: 10.7498/aps.70.20202180
    [7] 胡江平. 探索非常规高温超导体. 物理学报, doi: 10.7498/aps.70.20202122
    [8] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, doi: 10.7498/aps.67.20180936
    [9] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, doi: 10.7498/aps.67.20181496
    [10] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, doi: 10.7498/aps.66.037401
    [11] 贾艳丽, 杨桦, 袁洁, 于和善, 冯中沛, 夏海亮, 石玉君, 何格, 胡卫, 龙有文, 朱北沂, 金魁. 浅析电子型掺杂铜氧化物超导体的退火过程. 物理学报, doi: 10.7498/aps.64.217402
    [12] 路洪艳, 陈三, 刘保通. 铜氧化物超导体两能隙问题的电子拉曼散射理论研究. 物理学报, doi: 10.7498/aps.60.037402
    [13] 吴建宝. 层状铜氧化物超导体的有限温Landau理论. 物理学报, doi: 10.7498/aps.55.2049
    [14] 余超凡, 陈斌, 何国柱. 非含Cu氧化物超导体的超导电性机制. 物理学报, doi: 10.7498/aps.43.1152
    [15] 金光海, 章立源. 对高温氧化物超导体的黄金坐标分析. 物理学报, doi: 10.7498/aps.41.999
    [16] 曹效文, 冯尚申, 高孝恢, 蒋淑芬, 韦钦. 高Tc氧化物超导体Bi(Pb)-Sr-Ca-Cu-O(F)的“不可逆线”. 物理学报, doi: 10.7498/aps.40.117
    [17] 杜家驹, 姜建义, 王翔, 尹华清. 单相钇钡铜氧高温超导体的超导转变与内耗原位研究. 物理学报, doi: 10.7498/aps.37.1556
    [18] 丁尚武, 侯磊. 氧化物高温超导体的双极化子解释的可能性. 物理学报, doi: 10.7498/aps.37.1180
    [19] 王尧基, 胡静竹, 王文魁. LaBaCu2O5-δ氧化物超导体的压缩特性. 物理学报, doi: 10.7498/aps.37.1668
    [20] 王广厚. 离子注入超导体PdCu中的氢分布和超导临界温度. 物理学报, doi: 10.7498/aps.33.1434
计量
  • 文章访问数:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-17

/

返回文章
返回