搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望

陈卓昱 黄浩亮 薛其坤

引用本文:
Citation:

常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望

陈卓昱, 黄浩亮, 薛其坤

Ambient-Pressure Ruddlesden-Popper Bilayer Nickelate Superconductors: From Discovery to Prospects

CHEN Zhuoyu, HUANG Haoliang, XUE Qi-Kun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,镍氧化物超导电性备受关注,全球多个科研团队在常压和高压条件下,发现了多种镍氧化物材料的超导电性。来自中国和美国的研究团队通过独立、相异的研究路径,发现了常压下双层Ruddlesden-Popper结构镍氧化物薄膜的高温超导电性,为深入研究高温超导机理提供了全新的平台。中国团队基于自主发展的“强氧化原子逐层外延”技术,制备出具有原子级平滑表面的纯相双层结构镍氧化物超导薄膜。通过原位强氧化处理技术,可在原子级平整的薄膜表面开展ARPES等表面敏感测量,揭示超导相的电子结构特征,为超导微观机理的深入研究提供关键实验基础。通过协同开展晶格结构设计、稀土/碱土元素替代以及界面应力工程调控,我们有望进一步提升该体系的超导转变温度。
    Recent years have witnessed remarkable progress in nickelate superconductivity, with global teams identifying multiple nickelate superconductors under both ambient and high pressures. U.S. and Chinese research teams independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through distinct technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese team synthesized pure-phase bilayer nickelate films with atomically smooth surfaces using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. Enabled by in situ strong oxidation processing, surface sensitive measurements, such as ARPES, can be conducted with these atomically flat films, revealing the electronic structures of the superconducting phase, and promising further in-depth experimental research on superconducting mechanisms. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system holds potential for achieving higher superconducting transition temperatures.
  • [1]

    Kamerlingh Onnes, H. 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926. (Dordrecht: Springer Netherlands) 267.

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108, 1175.

    [3]

    McMillan W, 1968 Phys. Rev. 167, 331.

    [4]

    Bednorz J, Müller K 1986 Z. Physik B-Condensed Matter 64, 189.

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26, L1.

    [6]

    Zhao Z, Chen L, Yang Q, Huang Y, Chen G, Tang R, Liu G, Cui C, Chen L, Wang L, Guo S, Li S, Bi J 1987 Chin. Sci. Bull. 32, 412 (in Chinese).

    [7]

    Wu M, Ashburn J, Torng C, Hor P, Meng R, Gao L, Huang Z, Wang Y,Chu C 1987 Phys. Rev. Lett. 58, 908.

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128, 10012.

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130, 3296.

    [10]

    Chen X, Wu T, Wu G, Liu R, Chen H, Fang D 2008 Nature 453, 761.

    [11]

    Chen G, Li Z, Wu D, Li G, Hu W, Dong J, Zheng P, Luo J, Wang N 2008 Phys. Rev. Lett. 100, 247002.

    [12]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Zheng C, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25, 2215.

    [13]

    Wang Q,Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29, 037402.

    [14]

    Li D, Lee K, Wang B, Osada M, Crossley S, Lee H, Cui Y, Hikita Y, Hwang H 2019 Nature 572, 624.

    [15]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D, Zhang G, Wang M 2023 Nature 621, 493.

    [16]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20, 1269.

    [17]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634, 579.

    [18]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J, Zhao J 2024 Nature 631, 531.

    [19]

    Lee J, Luo G, Tung I, Chang S, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S, Eastman J, Hong H, Jellinek J, Morgan D, Fong D, Freeland J 2014 Nat. Mater. 13, 879.

    [20]

    Lei Q, Golalikhani M, Davidson B, Liu G, Schlom D, Qiao Q, Zhu Y, Chandrasena R, Yang W, Gray A, Arenholz E, Farrar A, Tenne D, Hu M, Guo J, Singh R, Xi X 2017 npj Quant. Mater. 2, 10.

    [21]

    Zhou X, Zhang X, Yi J, Qin P, Feng Z, Jiang P, Zhong Z, Yan H, Wang X, Chen H, Wu H, Zhang X, Meng Z, Yu X, Breese M, Cao J, Wang J, Jiang C, Liu Z 2021 Adv. Mater. 34, 2106117.

    [22]

    Pan G, Song Q, Segedin D, Jung M, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Materials 6, 055003.

    [23]

    Gao X, Liu J, Ji Y, Wei L, Xiao W, Hu S, Li L, Gan Y, Chen K, Liao Z 2023 APL Mater. 11, 111109.

    [24]

    Wei W, Vu D, Zhang Z, Walker F, Ahn C 2023 Sci. Adv. 9, eadh3327.

    [25]

    Aggarwal L, Božović I 2024 Materials 17, 2546.

    [26]

    Ding X, Fan Y, Wang X, Li C, An Z, Ye J, Tang S, Lei M, Sun X, Guo N, Chen Z, Sangphet S, Wang Y, Xu H, Peng R, Feng D 2024 Nat. Sci. Rev. 11, nwae194.

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J, Gu L, Ge C, Wang C, Cheng J, Zhang Q, Si L, Jin K, Guo E 2024 Commun. Mater. 5, 32.

    [28]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y, Wen H 2024 Phys. Rev. Materials 8, 124801.

    [29]

    Ren X, Sutarto R, Wu X, Zhang J, Huang H, Xiang T, Hu J, Comin R, Zhou X, Zhu Z 2025 Commun. Phys. 8, 52.

    [30]

    Chow S, Luo Z, Ariando A 2025 Nature https://doi.org/10.1038/s41586-025-08893-4.

    [31]

    Liu Y, Ou M, Wang Y, Wen H arXiv.2411.16047 [cond-mat.supr-con].

    [32]

    Huo M, Ma P, Huang C, Huang X, Sun H, Wang M arXiv:2501.15929 [cond-mat.supr-con].

    [33]

    Zhong H, Hao B, Wei Y, Zhang Z, Liu R, Huang X, Ni X, Cantarino M, Cao K, Nie Y, Schmitt T, Lu X arXiv:2502.03178 [cond-mat.supr-con].

    [34]

    Xu M, Qiu D, Xu M, Guo Y, Shen C, Yang C, Sun W, Nie Y, Li Z, Xiang T, Qiao L, Xiong J, Li Y arXiv:2502.14633 [cond-mat.supr-con].

    [35]

    Yang M, Wang H, Tang J, Luo J, Wu X, Mao R, Xu W, Zhou G, Dong Z, Feng B, Shi L, Pei Z, Gao P, Chen Z, Li D arXiv:2503.18346 [cond-mat.supr-con].

    [36]

    Zhou G, Huang H, Wang F, Wang H, Yang Q, Nie Z, Lv W, Ding C, Li Y, Lin J, Yue C, Li D, Sun Y, Lin J, Zhang G, Xue Q, Chen Z 2025 Nat. Sci. Rev. 12, nwae429.

    [37]

    Ko E, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C, Wang B, Lee Y, Lee K, Lee J, Goodge B, Muller D, Hwang H 2025 Nature 638, 935.

    [38]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q, Chen Z 2025 Nature 640, 641.

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54, 1802.

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58, 771.

    [41]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature 630, 847.

    [42]

    Liu Y, Ko E, Tarn Y, Bhatt L, Goodge B, Muller D, Raghu S, Yu Y, Hwang H arXiv:2501.08022 [cond-mat.supr-con].

    [43]

    Wang H, Huang H, Zhou G, Lv W, Yue C, Xu L, Wu X, Nie Z, Chen Y, Sun Y, Chen W, Yuan H, Chen Z, Xue Q arXiv: 2502.18068 [cond-mat.supr-con].

    [44]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z, Qian T, Lin J, He J, Sun Y, Chen Z, Xue Q arXiv.2501.09255 [cond-mat.supr-con].

    [45]

    Yue C, Miao J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Sun H, Sun Y, Lin J, Xue Q, Chen Z, Chen W arXiv:2501.06875 [cond-mat.str-el].

    [46]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y, Xue Q, Chen Z, He J arXiv.2502.17831 [cond-mat.supr-con].

    [47]

    Wang BY, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y, Wang R, Li J, Tarn Y, Ko EK, Thampy V, Hashimoto M, Lu D, Lee YS, Devereaux TP, Jia C, Hwang HY, Shen ZX arXiv:2504.16372 [cond-mat.supr-con].

    [48]

    Yang H, Zhou Y, Miao G, Rusz J, Yan X, Guzman F, Xu X, Xu X, Aoki T, Zeiger P, Zhu X, Wang W, Guo J, Wu R, Pan X 2024 Nature 635, 332.

    [49]

    Li F, Peng D, Dou J, Guo N, Ma L, Liu C, Wang L, Zhang Y, Luo J, Yang J, Zhang J, Cai W, Cheng J, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J arXiv:2501.14584 [cond-mat.supr-con].

    [50]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H, Wang M arXiv:2404.11369 [cond-mat.supr-con].

    [51]

    Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y, Zhu J 2023 Science 381, 227.

    [52]

    Zhang M, Pei C, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, Wen C, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhang L, Li Z, Zhao J, Chen Y, Guo H, Wu C, Yang F, Yan S, Yang L, Qi Y 2025 Phys. Rev. X 15, 021005.

    [53]

    Shi M, Li Y, Wang Y, Peng D, Yang S, Li H, Fan K, Jiang K, He J, Zeng Q, Song D, Ge B, Xiang Z, Wang Z, Ying J, Wu T, Chen X arXiv:2501.12647 [cond-mat.supr-con].

    [54]

    Zhang E, Peng D, Zhu Y, Chen L, Cui B, Wang X, Wang W, Zeng Q, Zhao J 2025 Phys. Rev. X 15, 021008.

    [55]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X arXiv:2502.01018 [cond-mat.supr-con].

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报, doi: 10.7498/aps.74.20241534
    [2] 向涛. 高温超导: 推动量子多体理论革命的引擎. 物理学报, doi: 10.7498/aps.74.20250313
    [3] 陈萤, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展. 物理学报, doi: 10.7498/aps.74.20241402
    [4] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用. 物理学报, doi: 10.7498/aps.73.20241009
    [5] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.70.20201913
    [6] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, doi: 10.7498/aps.68.20190494
    [7] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, doi: 10.7498/aps.67.20181681
    [8] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, doi: 10.7498/aps.67.20181543
    [9] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, doi: 10.7498/aps.67.20181768
    [10] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, doi: 10.7498/aps.63.027401
    [11] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角. SmFeAsO材料的正电子寿命研究. 物理学报, doi: 10.7498/aps.59.2789
    [12] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, doi: 10.7498/aps.59.7320
    [13] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, doi: 10.7498/aps.58.4189
    [14] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, doi: 10.7498/aps.58.4194
    [15] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应. 物理学报, doi: 10.7498/aps.57.7252
    [16] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究. 物理学报, doi: 10.7498/aps.56.1680
    [17] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, doi: 10.7498/aps.55.3683
    [18] 张玉龙, 姚 忻, 张 宏, 金燕苹. YBCO熔融织构准单晶中的进氧和脱氧扩散研究. 物理学报, doi: 10.7498/aps.54.3380
    [19] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, doi: 10.7498/aps.51.2355
    [20] 曹天德, 黄清龙. 二分量高温超导机理. 物理学报, doi: 10.7498/aps.51.1600
计量
  • 文章访问数:  33
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-25

/

返回文章
返回