搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共振非弹性X射线散射在量子材料领域的应用

周克瑾

引用本文:
Citation:

共振非弹性X射线散射在量子材料领域的应用

周克瑾

Resonant Inelastic X-ray Scattering Applications in Quantum Materials

Zhou Ke-Jin
PDF
导出引用
  • 共振非弹性X射线散射(Resonant Inelastic X-ray Scattering,RIXS)是一种先进的基于同步辐射和自由电子激光光源的光进光出的谱学探测手段。在过去的十几年,RIXS的能量分辨不断被提高,其对凝聚态物质的研究也从最初的晶体场分裂和电荷转移激发,发展到产生于包括电荷、自旋、轨道、晶格四个量子自由度的集体激发行为及相关的序参量。本文总结了近几年高分辨软X射线RIXS在量子材料领域如铜基和镍基高温超导材料等离子激发及磁激发的研究,量子材料中的集体轨道激发、激子激发和高阶磁激发,以及对磁性金属和拓扑磁性材料中磁激发的探测。
    The essence of quantum materials lies in the intricate coupling among charge, spin, orbital and lattice degrees of freedom. Although X-ray photoemission spectroscopy and inelastic neutron scattering are advantegous in detecting fermionic single-particle spectral function and bosonic spin excitations in quantum materials, respectively, probing other bosonic collective excitations especially their coupling is not possible until the establishment of the advanced resonant inelastic X-ray scattering (RIXS). In the past decades, RIXS has flourished with continuously improved energy resolution which made a paradigm shift from measuring crystal-field splitting and the charge-transfer excitation, to probe collective excitations and the order parameters of all degrees of freedom. This review article summarises the most recent progress made by the soft X-ray RIXS in the field of quantum materials. For instance, three-dimensional collective charge excitations, plasmons, were discovered experimentally by RIXS in both electron and hole doped cuprate superconductors. The collective orbital excitations and excitons were found in copper and nickel based quantum materials. For the newly discovered nickelate superconductors, RIXS has made substantial contributions in characterising their electronic and magnetic excitations and the related ordering phenomena critical for an in-depth understanding of the underlying superconducting mechanicsm. RIXS is a unique tool in probing the higher-order spin excitations in quantum materials thanks to the strong spin-orbit coupling and the core-valence exchange interaction. RIXS is also found superior in probing the Stoner magnetic excitations in magnetic metals and topological magnetic materials. Finally, a short perspective is provided in terms of the development of RIXS technique in Chinese large-scale research facilities.
  • [1]

    Tokura Y, Kawasaki M, and Nagaosa N 2017 Nature Physics 13 1056

    [2]

    Yin J-X, Lian B, Zahid Hasan M 2022 Nature 612 647

    [3]

    Dresselhaus M S 2011 Annu. Rev. Condens. Matter Phys 2 1

    [4]

    Ohtomo A, Hwang H Y 2004 Nature 427 423

    [5]

    Chen S, Ning Y, Tang C S 2024 Adv. Electron. Mater 10 2300730

    [6]

    Wang Q Y, Zhi L, Zhang W H 2012 Chin. Phys. Lett 29 037402

    [7]

    Ament L J P, van Veenendaal M, Devereaux T P 2011 Rev. Mod. Phys 83 705

    [8]

    Braicovich L, van den Brink L, Bisogni V 2010 Phys. Rev. Lett 104 077002

    [9]

    Le Tacon M, Ghiringhelli G, Chaloupka J 2011 Nat. Phys 7 725

    [10]

    Zhou K J, Huang Y B, Monney C 2013 Nat. Commun 4 1470

    [11]

    Haverkort M W 2010 Phys. Rev. Lett 105 167404

    [12]

    Glawion S, Heidler J, Haverkort M W 2011 Phys. Rev. Lett 107 107402

    [13]

    Schlappa J, Wohlfeld K, Zhou K J 2012 Nature 485 82

    [14]

    Benckiser E, Fels L, Ghiringhelli G 2013 Phys. Rev. B 88 205115

    [15]

    Nomura T, Harada Y, Niwa H 2016 Phys. Rev. B 94 035134

    [16]

    Wang R P, Hariki A, Sotnikov A 2018 Phys. Rev. B 98 035149

    [17]

    Moser S, Fatale S, Krüger P 2015 Phys. Rev. Lett 115 096404

    [18]

    Ament L J P, van Veenendaal M, van den Brink J 2011 Euro. Phys. Lett 95 27008

    [19]

    Ueda H, Garcia-Fernandez M, Agrestini S 2023 Nature 618 946

    [20]

    Ghiringhelli G, Le Tacon M, Minola M 2012 Science 337 821

    [21]

    Chaix L, Ghiringhelli G, Peng Y Y 2017 Nat. Phys 13 952

    [22]

    Li J, Nag A, Pelliciari J 2020 PNAS 117 16219

    [23]

    Lee W S, Zhou K J, Hepting M 2021 Nat. Phys 17 53

    [24]

    Comin R, Damascelli A 2016 Annu. Rev. Condens. Matter Phys 7 369

    [25]

    Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759

    [26]

    Pavarini E, Gasgupta I, Saha-Dasgupta T 2001 Phys. Rev. Lett 87 047003

    [27]

    Sakakibara H, Usui H, Kuroki K 2010 Phys. Rev. Lett 105 057003

    [28]

    Keimer B, Kivelson S A, Norman M R 2015 Nature 518 179

    [29]

    Kresin V Z and Morwitz H 1988 Phys. Rev. B 37 7854

    [30]

    Ishii Y and Ruvalds J 1993 Phys. Rev. B 48 3455

    [31]

    Bill A, Morawitz H, Kresin V Z 2003 Phys. Rev. B 68 144519

    [32]

    Hepting M, Chaix L, Huang E W 2018 Nature 563 374

    [33]

    Lin J, Yuan J, Jin K 2020 npj Quantum Mater 5 4

    [34]

    Nag A, Zhu M, Bejas M 2020 Phys. Rev. Lett 125 257002

    [35]

    Singh A, Huang H Y, Lane C 2022 Phys. Rev. B 105 235105

    [36]

    Hepting M, Bejas M, Nag A 2022 Phys. Rev. Lett 129 047001

    [37]

    Nag A, Zinni L, Choi J 2024 arXiv: 2407.15692

    [38]

    Kim C, Matsuura A Y, Shen Z X 1996 Phys. Rev. Lett 77 4054

    [39]

    Kim B J, Koh H, Rotenberg E 2006 Nat. Phys 2 397

    [40]

    Martinelli L, Wohlfeld K, Pelliciari J 2024 Phys. Rev. Lett 132 066004

    [41]

    Kang S, Kim K, Kim B H 2020 Nature 583 785

    [42]

    He W, Shen Y, Wohlfeld K 2024 Nat. Commun 15 3496

    [43]

    Occhialini C A, Tseng Y, Elnaggar H 2024 arXiv: 2404.10818

    [44]

    Li D, Lee K, Wang B Y 2019 Nature 572 624

    [45]

    Hepting M, Li D, Jia C J 2020 Nat. Mater 19 381

    [46]

    Bisogni V, Catalano S, Green R J 2016 Nat. Commun 7 13017

    [47]

    Lu Y, Betto D, Fürsich K 2018 Phys. Rev. X 8 031014

    [48]

    Rossi M, Lu H, Nag A 2021 Phys. Rev. B 104, L220505

    [49]

    Pan G A, Segedin D F, LaBollita H 2022 Nat. Mater 21 160

    [50]

    Shen Y, Sears J, Fabbris G 2022 Phys. Rev. X 12 011055

    [51]

    Ortiz R A, Puphal P, Klett M 2022 Phys. Rev. Res 4 023093

    [52]

    Lu H, Rossi M, Nag A 2021 Science 373 213

    [53]

    Headings N S, Hayden S M, Coldea R 2010 Phys. Rev. Lett 105 247001

    [54]

    Robarts H C, Garcia-Fernandez M, Li J 2021 Phys. Rev. B 103 224427

    [55]

    Tam CC, Choi J, Ding X 2022 Nat. Mater 21 1116

    [56]

    Krieger G, Martinelli L, Zeng S 2022 Phys. Rev. Lett 129 027002

    [57]

    Rossi M Osada M, Choi J 2022 Nat. Phys 18 869

    [58]

    Parzyck C T, Gupta N K, Wu Y 2024 Nat. Mater 23 486

    [59]

    Rossi M, Lu H, Lee K 2024 Phys. Rev. B 109 024512

    [60]

    Sun H, Huo M, Hu X 2023 Nature 621 493

    [61]

    Luo Z, Hu X, Wang M 2023 Phys. Rev. Lett 131 126001

    [62]

    Kaneko T, Sakakibara H, Ochi M 2024 Phys. Rev. B 109 045154

    [63]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108

    [64]

    Kakoki M, Oi T, Ohshita Y 2024 J. Phys. Soc. Jpn 93 053702

    [65]

    Dan Z, Zhou Y, Huo M 2024 arXiv: 2402.03952

    [66]

    Chen K, Liu X, Jiao J 2024 Phys. Rev. Lett 132 256503

    [67]

    Khasanov R, Hicken T J, Gawryluk D J 2024 arXiv: 2402.10485

    [68]

    Chen X, Choi J, Jiang Z 2024 arXiv: 2401.12657

    [69]

    Walters A C, Perring T G, Caux J S 2009 Nat. Phys 5 867

    [70]

    Mourigal m, Enderle M, Klöpperpieper A 2013 Nat. Phys 9 435

    [71]

    Schlappa J, Kumar U, Zhou K J 2018 Nat. Commun 9 5394

    [72]

    Kumar U, Nag A, Li J 2022 Phys. Rev. B 106, L060406

    [73]

    Nag A, Nocera A, Agrestini S 2022 Nat. Commun 13 2327

    [74]

    Xu G, Broholm C, Soh Y A 2007 Science 317 1049

    [75]

    Nag A, Robarts H C, Wenzel F 2020 Phys. Rev. Lett 124 067202

    [76]

    Li J, Gu Y, Takahashi Y 2023 Phys. Rev. X 13, 011012

    [77]

    Elnaggar H, Nag A, Haverkort M W 2023 Nat. Commun 14 2749

    [78]

    Poelchen G, Hellwig J, Peters M 2023 Nat Commun 14 5422

    [79]

    Brookes N B, Betto D, Cao K 2020 Phys. Rev. B 102 064412

    [80]

    Pelliciari J, Lee S, Gilmore K 2021 Nat. Mater 20 188

    [81]

    Bernevig B A, Felser C, Beldenkopf H 2022 Nature 603 41

    [82]

    Lin Z, Choi J H, Zhang Q 2018 Phys. Rev. Lett 121 096401

    [83]

    Kang M, Fang S, Ye L 2020 Nat. Commun 11 4004

    [84]

    Liu Z, Li M, Wang Q 2020 Nat. Commun 11 4002

    [85]

    Yin J X, Zhang S S, Chang G 2019 Nat. Phys 15 443

    [86]

    Nag A, Peng Y, Li J 2022 Nat. Commun 13 7317

    [87]

    Fatuzzo C G, Dantz M, Fatale S 2015 Phys. Rev. B 91 155104

    [88]

    Das L, Forte F, Fittipaldi R 2018 Phys. Rev. X 8 011048

    [89]

    Lebert B W, Kim S, Bisogni V 2020 J. Phys. Condens. Matter 32 144001

    [90]

    Occhialini C A, Bisogni V, You H 2021 Phys. Rev. Res 3 033214

    [91]

    von Arx K, Forte F, Horio M 2020 Phys. Rev. B 102 235104

    [92]

    Lu X, Olalde-Velasco P, Huang Y 2018 Phys. Rev. B 97 041102

    [93]

    Ament L J P, Khaliullin van den Brink J 2011 Phys. Rev. B 84 020403

    [94]

    Moretti Sala M, Rossi M, Boseggia S 2014 Phys. Rev. B 89 121101

    [95]

    Zimmermann V, Kuma Yogi A, Wong D 2023 npj Quantum Mater 8 53

    [96]

    Paris E, Tseng Y, Pärschke E M 2020 PNAS 117 24764

    [97]

    Suzuki H, Gretarsson H, Ishikawa H 2019 Nat. Mater 18 563

    [98]

    Yang Z, Wang L, Zhao D 2023 Phys. Rev. B 108 L041406

    [99]

    Takahashi H, Suzuki H, Bertinshaw J 2021 Phys. Rev. Lett 127 227201

    [100]

    Qamar A, Braun P M, Walia S 2022 Phys. Rev. Mat 6 074003

    [101]

    Kim J, Casa D, Upton M H 2012 Phys. Rev. Lett 108 177003

    [102]

    Gretarsson H, Clancy J P, Liu X 2013 Phys. Rev. Lett 110 076402

    [103]

    Kim J, Said A H, Casa D 2012 Phys. Rev. Lett 109 157402

    [104]

    Yuan B, Clancy J P, Cook A M 2017 Phys. Rev. B 95 235114

    [105]

    Revelli A, Moretti Sala M, Monaco G 2019 Sci. Adv 5 aav4020

    [106]

    Amorese A, Stockert O, Kummer K 2019 Phys. Rev. B 100 241107

    [107]

    Amorese A, Hansmann P, Marino A 2023 Phys. Rev. B 107 115164

    [108]

    Kvashnina K O, Butorin S M, Martin P 2013 Phys. Rev. Lett 111 253002

    [109]

    Lander G H, Sundermann M, Springell R 2021 J. Phys. Condens. Matter 33 06LT01

    [110]

    de Groot F M F, Haverkort M W, Elnaggar H 2024 Nat. Rev. Methods Primers 4 45

    [111]

    Brookes N B, Yakhou-Harris F, Kummer K 2018 NIMA 903 175

    [112]

    Zhou K J, Walters A, Garcia-Fernandez M 2022 J. Synchrotron Radiat 29 563

    [113]

    Dvorak J, Jarrige I, Bisogni V 2016 Rev. Sci. Instrum 87 115109

    [114]

    Singh A, Huang H Y, Chu Y Y 2021 J. Synchrotron Radiat 28 977

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, doi: 10.7498/aps.73.20240983
    [2] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控. 物理学报, doi: 10.7498/aps.72.20222306
    [3] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, doi: 10.7498/aps.66.143401
    [4] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, doi: 10.7498/aps.65.027901
    [5] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, doi: 10.7498/aps.65.087301
    [6] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输. 物理学报, doi: 10.7498/aps.64.160305
    [7] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, doi: 10.7498/aps.60.047105
    [8] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, doi: 10.7498/aps.59.5382
    [9] 刘学超, 陈之战, 施尔畏, 严成锋, 黄维, 宋力昕, 周克瑾, 崔明启, 贺博, 韦世强. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究. 物理学报, doi: 10.7498/aps.58.498
    [10] 杨治虎, 张小安, 赵永涛, 殷纬纬, 李宁溪. 氧离子激发光谱的精密测量. 物理学报, doi: 10.7498/aps.55.4520
    [11] 蒋建军, 张松俊, 刘拥军. 阻挫对准一维非对称子格反铁磁链自旋波激发的影响. 物理学报, doi: 10.7498/aps.55.4888
    [12] 史庆藩, 闫学群. 非线性激发的磁激子对的振荡特性. 物理学报, doi: 10.7498/aps.52.225
    [13] 徐克西. 非平衡辐射响应与准二维高温超导体系的磁通涡旋激发. 物理学报, doi: 10.7498/aps.49.989
    [14] 陈宇光, 袁青山, 陈鸿, 章豫梅, 吴翔. 一维量子sine-Gordon模型的元激发谱. 物理学报, doi: 10.7498/aps.46.1174
    [15] 朱善华, 黄国翔, 徐在新. 一维更键Heisenberg铁磁链间隙非线性元激发. 物理学报, doi: 10.7498/aps.46.2036
    [16] 陈善宝, 张志强. 磁性薄膜畴壁短波长自旋波模式激发. 物理学报, doi: 10.7498/aps.45.2068
    [17] 滕华国, 徐至展, 胡畏, 王炎森, 方渡飞. 类钠铜离子的激发自电离. 物理学报, doi: 10.7498/aps.45.1788
    [18] 陈传誉. 一维量子晶格气中的孤子激发. 物理学报, doi: 10.7498/aps.40.1207
    [19] 钱昆明, 林肇华, 戴道生. 自旋波共振激发的新模型. 物理学报, doi: 10.7498/aps.32.1547
    [20] 王鼎盛, 蒲富恪. 有限铁磁—反铁磁线链中的自旋波谱及其激发. 物理学报, doi: 10.7498/aps.20.1067
计量
  • 文章访问数:  118
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-04

/

返回文章
返回