-
随着X射线光源的进步和量子光学的发展,形成了X射线量子光学这一前沿分支学科。原子内壳层跃迁是重要的X射线量子光学体系,它具有跃迁种类丰富和表征手段多样、覆盖波段范围宽等优势。但内壳层空穴的自然线宽较宽且与电离连续区重叠,使得实验上缺乏纯粹的二能级跃迁,成为了制约X射线量子光学发展的瓶颈之一。本文利用共振非弹性X射线散射技术,在实验上分离了WSi2中W-L3边的白线和电离连续区,从而为基于原子内壳层跃迁的X射线量子光学体系提供了二能级方案,也为这一领域的发展提供了强有力的实验技术支持。
-
关键词:
- X射线量子光学 /
- 内壳层跃迁 /
- 共振非弹性X射线散射 /
- 二能级
With the advancement of synchrotron and free-electron laser developments, X-ray quantum optics has emerged as a novel frontier for exploring light-matter interactions at high photon energies. A major challenge in this field is the well-defined two-level systems using atomic inner-shell transitions, which are often hindered by broad natural linewidths and their overlap with the ionization continuum. This study aims to explore the potential of tungsten disilicide (WSi2) as a two-level system for X-ray quantum optics applications. Utilizing high-resolution resonant inelastic X-ray scattering (RIXS) near the W-L3 edge, this work experimentally resolves the pre-edge white line from the ionization continuum, overcoming the spectral broadening caused by short core-hole lifetimes. The measurements were conducted using a von Hamos spectrometer at the GALAXIES beamline of the SOLEIL synchrotron. The results reveal a single resonant emission feature with a fixed energy tranfer (shown as below, same as Fig 4), confirming the presence of a discrete 2p–5d transition characteristic of a two-level system. Additional high-resolution XAS spectra, obtained via high energy resolution fluorescence detection (HERFD) method and reconstructed from off-resonant emission (HEROS) method, further support the identification of a sharp white line. These findings demonstrate the feasibility of using WSi2 as a model system in X-ray cavity quantum optics and establish RIXS as a powerful technique to resolve fine inner-shell structures.-
Keywords:
- X-ray quantum optics /
- inner-shell transition /
- resonant inelastic X-ray scattering (RIXS) /
- two-level system
-
[1] Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11685
[2] Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119130502
[3] Wang S X, Li T J, Huang X C, Zhu L F 2024 Acta Phys. Sin. 731. (in Chinese)[汪书兴, 李天钧, 黄新朝, 朱林繁2024物理学报731]
[4] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88015007
[5] Ablett J M, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno Th, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff J P 2019 J. Synchrotron Rad. 26263
[6] Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Rad. 22175
[7] Linker T M, Halavanau A, Kroll T, Benediktovitch A, Zhang Y, Michine Y, Chuchurka S, Abhari Z, Ronchetti D, Fransson T, et al. 2025 Nature 642934
[8] Kroll T, Weninger C, Alonso-Mori R, Sokaras D, Zhu D, Mercadier L, Majety V P, Marinelli A, Lutman A, Guetg M W, et al. 2018 Phys. Rev. Lett. 120133203
[9] Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, EngJohnsson P, Feifel R, et al. 2022 Nature 608488
[10] Heeg K P, Evers J 2013 Phys. Rev. A 88043828
[11] Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482199
[12] Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10445
[13] Heeg K P, Evers J 2013 Phys. Rev. A 88043828
[14] Heeg K P, Evers J 2015 Phys. Rev. A 91063803
[15] Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2023396
[16] Lentrodt D, Evers J 2020 Phys. Rev. X 10011008
[17] Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102033710
[18] Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109063702
[19] Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95097601
[20] Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129213602
[21] Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114207401
[22] Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3033063
[23] Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677
[24] Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109033703
[25] Ketenoglu D 2022 X-Ray Spectrom. 51422
[26] Dorenbos P 2003 J. Phys.:Condens. Matter 156249
[27] Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Rad. 27689
[28] Khyzhun O Y, Strunskus T, Grünert W, Wöll C 2005 J. Electron Spectrosc. Relat. Phenom. 14945
[29] Kotani A, Kvashnina K O, Butorin S M, Glatzel P 2012 Eur. Phys. J. B 85257
[30] Maganas D, DeBeer S, Neese F 2017 Inorg. Chem. 5611819
[31] Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112173003
[32] Pan Y, Jing C, Wu Y 2019 Vacuum 167374
[33] Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven J A, Dousse J C, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A 2012 Rev. Sci. Instrum. 83103105
[34] Veldkamp J 1935 Physica 225
[35] Briand J P 1981 Phys. Rev. Lett. 461625
[36] Tulkki J, Aberg T 1980 J. Phys. B 133341
[37] Bergmann U, Glatzel P 2009 Photosynth. Res. 102255
[38] Błachucki W, Hoszowska J, Dousse J C, Kayser Y, Stachura R, Tyrała K, Wojtaszek K, Sá J, Szlachetko J 2017 Spectrochim. Acta B 13623
[39] Hayashi H, Takeda R, Udagawa Y, Nakamura T, Miyagawa H, Shoji H, Nanao S, Kawamura N 2003 Phys. Rev. B 68045122
[40] Hayashi H, Udagawa Y, Caliebe W A, Kao C C 2003 Chem. Phys. Lett. 38856
计量
- 文章访问数: 27
- PDF下载量: 1
- 被引次数: 0