搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WSi2的W-L3边高分辨率共振非弹性X射线散射研究

赵喆芊 汪书兴 王希源 苏洋 马子茹 黄新朝 朱林繁

引用本文:
Citation:

WSi2的W-L3边高分辨率共振非弹性X射线散射研究

赵喆芊, 汪书兴, 王希源, 苏洋, 马子茹, 黄新朝, 朱林繁

High-Resolution Resonant Inelastic X-ray Scattering Study of the W-L3 Edge in WSi2

Zhao Zheqian, Wang Shuxing, Wang Xiyuan, Su Yang, Ma Ziru, Huang Xinchao, Zhu Linfan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着X射线光源的进步和量子光学的发展,形成了X射线量子光学这一前沿分支学科。原子内壳层跃迁是重要的X射线量子光学体系,它具有跃迁种类丰富和表征手段多样、覆盖波段范围宽等优势。但内壳层空穴的自然线宽较宽且与电离连续区重叠,使得实验上缺乏纯粹的二能级跃迁,成为了制约X射线量子光学发展的瓶颈之一。本文利用共振非弹性X射线散射技术,在实验上分离了WSi2中W-L3边的白线和电离连续区,从而为基于原子内壳层跃迁的X射线量子光学体系提供了二能级方案,也为这一领域的发展提供了强有力的实验技术支持。
    With the advancement of synchrotron and free-electron laser developments, X-ray quantum optics has emerged as a novel frontier for exploring light-matter interactions at high photon energies. A major challenge in this field is the well-defined two-level systems using atomic inner-shell transitions, which are often hindered by broad natural linewidths and their overlap with the ionization continuum. This study aims to explore the potential of tungsten disilicide (WSi2) as a two-level system for X-ray quantum optics applications. Utilizing high-resolution resonant inelastic X-ray scattering (RIXS) near the W-L3 edge, this work experimentally resolves the pre-edge white line from the ionization continuum, overcoming the spectral broadening caused by short core-hole lifetimes. The measurements were conducted using a von Hamos spectrometer at the GALAXIES beamline of the SOLEIL synchrotron. The results reveal a single resonant emission feature with a fixed energy tranfer (shown as below, same as Fig 4), confirming the presence of a discrete 2p–5d transition characteristic of a two-level system. Additional high-resolution XAS spectra, obtained via high energy resolution fluorescence detection (HERFD) method and reconstructed from off-resonant emission (HEROS) method, further support the identification of a sharp white line. These findings demonstrate the feasibility of using WSi2 as a model system in X-ray cavity quantum optics and establish RIXS as a powerful technique to resolve fine inner-shell structures.
  • [1]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11685

    [2]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119130502

    [3]

    Wang S X, Li T J, Huang X C, Zhu L F 2024 Acta Phys. Sin. 731. (in Chinese)[汪书兴, 李天钧, 黄新朝, 朱林繁2024物理学报731]

    [4]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88015007

    [5]

    Ablett J M, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno Th, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff J P 2019 J. Synchrotron Rad. 26263

    [6]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Rad. 22175

    [7]

    Linker T M, Halavanau A, Kroll T, Benediktovitch A, Zhang Y, Michine Y, Chuchurka S, Abhari Z, Ronchetti D, Fransson T, et al. 2025 Nature 642934

    [8]

    Kroll T, Weninger C, Alonso-Mori R, Sokaras D, Zhu D, Mercadier L, Majety V P, Marinelli A, Lutman A, Guetg M W, et al. 2018 Phys. Rev. Lett. 120133203

    [9]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, EngJohnsson P, Feifel R, et al. 2022 Nature 608488

    [10]

    Heeg K P, Evers J 2013 Phys. Rev. A 88043828

    [11]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482199

    [12]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10445

    [13]

    Heeg K P, Evers J 2013 Phys. Rev. A 88043828

    [14]

    Heeg K P, Evers J 2015 Phys. Rev. A 91063803

    [15]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2023396

    [16]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10011008

    [17]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102033710

    [18]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109063702

    [19]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95097601

    [20]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129213602

    [21]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114207401

    [22]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3033063

    [23]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677

    [24]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109033703

    [25]

    Ketenoglu D 2022 X-Ray Spectrom. 51422

    [26]

    Dorenbos P 2003 J. Phys.:Condens. Matter 156249

    [27]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Rad. 27689

    [28]

    Khyzhun O Y, Strunskus T, Grünert W, Wöll C 2005 J. Electron Spectrosc. Relat. Phenom. 14945

    [29]

    Kotani A, Kvashnina K O, Butorin S M, Glatzel P 2012 Eur. Phys. J. B 85257

    [30]

    Maganas D, DeBeer S, Neese F 2017 Inorg. Chem. 5611819

    [31]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112173003

    [32]

    Pan Y, Jing C, Wu Y 2019 Vacuum 167374

    [33]

    Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven J A, Dousse J C, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A 2012 Rev. Sci. Instrum. 83103105

    [34]

    Veldkamp J 1935 Physica 225

    [35]

    Briand J P 1981 Phys. Rev. Lett. 461625

    [36]

    Tulkki J, Aberg T 1980 J. Phys. B 133341

    [37]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102255

    [38]

    Błachucki W, Hoszowska J, Dousse J C, Kayser Y, Stachura R, Tyrała K, Wojtaszek K, Sá J, Szlachetko J 2017 Spectrochim. Acta B 13623

    [39]

    Hayashi H, Takeda R, Udagawa Y, Nakamura T, Miyagawa H, Shoji H, Nanao S, Kawamura N 2003 Phys. Rev. B 68045122

    [40]

    Hayashi H, Udagawa Y, Caliebe W A, Kao C C 2003 Chem. Phys. Lett. 38856

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, doi: 10.7498/aps.73.20240983
    [2] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用. 物理学报, doi: 10.7498/aps.73.20241009
    [3] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学. 物理学报, doi: 10.7498/aps.73.20241218
    [4] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线. 物理学报, doi: 10.7498/aps.70.20212322
    [5] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, doi: 10.7498/aps.71.20220162
    [6] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射. 物理学报, doi: 10.7498/aps.70.20201236
    [7] 孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪. 类硼S离子K壳层激发共振态的辐射和俄歇跃迁. 物理学报, doi: 10.7498/aps.68.20190481
    [8] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, doi: 10.7498/aps.66.176109
    [9] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁. 物理学报, doi: 10.7498/aps.66.123101
    [10] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, doi: 10.7498/aps.66.143401
    [11] 李群, 屈媛, 班士良. 缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响. 物理学报, doi: 10.7498/aps.66.077301
    [12] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, doi: 10.7498/aps.65.027901
    [13] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青. H+和Ar11+激发Si的K壳层X射线发射研究. 物理学报, doi: 10.7498/aps.62.083201
    [14] 徐秋梅, 杨治虎, 杜树斌, 常宏伟, 张艳萍. 氧离子轰击引起钽的L壳层X射线发射截面的研究. 物理学报, doi: 10.7498/aps.60.093202
    [15] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究. 物理学报, doi: 10.7498/aps.58.6113
    [16] 刘学超, 陈之战, 施尔畏, 严成锋, 黄维, 宋力昕, 周克瑾, 崔明启, 贺博, 韦世强. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究. 物理学报, doi: 10.7498/aps.58.498
    [17] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [18] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, doi: 10.7498/aps.54.3851
    [19] 赵辉, 郭梅芳, 董宝中. 小角x射线散射结晶聚合物过渡层厚度的测定. 物理学报, doi: 10.7498/aps.53.1247
    [20] 何绍堂, 淳于书泰, 沈华忠, 尤永碌, 张启仁, 杜风英, 顾元元, 杨上金, 黄文忠, 蔡玉琴, 孔令华, 谷渝秋, 孙永良, 何安, 刘素萍. 双爆炸膜内壳层光电离X射线激光实验研究. 物理学报, doi: 10.7498/aps.42.1933
计量
  • 文章访问数:  27
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回