搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WSi2的W-L3边高分辨率共振非弹性X射线散射研究

赵喆芊 汪书兴 王希源 苏洋 马子茹 黄新朝 朱林繁

引用本文:
Citation:

WSi2的W-L3边高分辨率共振非弹性X射线散射研究

赵喆芊, 汪书兴, 王希源, 苏洋, 马子茹, 黄新朝, 朱林繁

High-resolution resonant inelastic X-ray scattering of W-L3 edge in WSi2

Zhao Zheqian, Wang Shuxing, Wang Xiyuan, Su Yang, Ma Ziru, Huang Xinchao, Zhu Linfan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 随着X射线光源的进步和量子光学的发展, 形成了X射线量子光学这一前沿分支学科. 原子内壳层跃迁是重要的X射线量子光学体系, 它具有跃迁种类丰富和表征手段多样、覆盖波段范围宽等优势. 但内壳层空穴的自然线宽较宽且与电离连续区重叠, 使得实验上缺乏纯粹的二能级跃迁, 成为了制约X射线量子光学发展的瓶颈之一. 本文利用共振非弹性X射线散射技术, 在实验上分离了WSi2 中W-L3边的白线和电离连续区, 从而为基于原子内壳层跃迁的X射线量子光学体系提供了二能级方案, 也为这一领域的发展提供了强有力的实验技术支持.
    With the advancement of synchrotron and free-electron laser, X-ray quantum optics has emerged as a novel frontier for exploring light-matter interactions at high photon energies. A significant challenge in this field is achieving well-defined two-level systems through atomic inner-shell transitions, which are often hindered by broad natural linewidths and their overlap with the ionization continuum. This study aims to explore the potential of tungsten disilicide (WSi2) as a two-level system for X-ray quantum optics applications. Utilizing high-resolution resonant inelastic X-ray scattering (RIXS) near the W-L3 edge, In this work, the pre-edge white line is experimentally distinguished from the ionization continuum, overcoming the spectral broadening caused by short core-hole lifetime. The measurements are conducted by using a von Hamos spectrometer at the GALAXIES beamline of the SOLEIL synchrotron. The results reveal a single resonant emission feature with a fixed energy transfer, confirming the presence of a discrete 2p–5d transition characteristic of a two-level system. Additional high-resolution XAS spectra, obtained via high energy resolution fluorescence detection method and reconstructed from off-resonant emission method, further support the identification of a sharp white line. These findings demonstrate the feasibility of using WSi2 as a model system in X-ray cavity quantum optics and establish RIXS as a powerful technique to resolve fine inner-shell structures.
  • 图 1  W原子2p3d共振非弹性X射线散射(RIXS)过程示意图, 两图中由左至右分别展示散射过程中的初始态、中间态和末态 (a) 经由$ {\rm{2 p}}^{-1}{\rm{5 d}} $中间态, 吸收和散射是不可分离的两步过程; (b) 经由$ {\rm{2 p}}^{-1}\varepsilon d $中间态, 表现为吸收和发射两步过程

    Fig. 1.  Schematic illustration of the W atom 2p–3d resonant inelastic X-ray scattering (RIXS) process with its initial, intermediate and final states shown from left to right: (a) via the $ {\rm{2 p}}^{-1}{\rm{5 d}} $ intermediate state, during which absorption and scattering are inseparable; (b) via the $ {\rm{2 p}}^{-1}\varepsilon d $ intermediate state, manifested as a two-step process of absorption and emission.

    图 2  von Hamos谱仪原理示意图, 所测光子能量约为8397 eV. 谱仪的能量色散方向由图中X射线颜色标识, 红色示意低能方向

    Fig. 2.  Schematic illustration of the von Hamos spectrometer, set to measure photon energies around 8397 eV. The energy dispersion direction is indicated by the color gradient of the X-ray beam, with red representing lower photon energies.

    图 3  (a) 弹性散射标定发射谱能量以及(b) 对标定峰位的拟合结果. 图(a)每个峰为不同入射光能量下的弹性散射信号, 代表了出现在色散方向的不同位置, 通过提取峰位代入(b)中拟合得到色散关系.

    Fig. 3.  (a) Elastic scattering spectra measured at different incident photon energies, (b)each peak corresponds to a distinct position on detector along the energy-dispersive axis of the spectrometer. (b) The dispersion relation derived by fitting the peak positions from (a), establishing the energy calibration function.

    图 4  W的L3吸收边(10208 eV)附近的RIXS二维图 (a)及能量转移图 (b). 白色虚线对应发射光能量为8397.6 eV, 对应2p电子电离产生$ {\rm{2 p}}^{-1}\varepsilon d $中间态过程. 此时随入射光能量的增加发射光子能量不变, 能量转移变大; 黑色虚线对应能量转移约为1809 eV, 对应2p-5d共振产生$ {\rm{2 p}}^{-1}{\rm{5 d}} $中间态过程. 此时随入射光能量的增加发射光子能量增加但能量转移保持不变.

    Fig. 4.  (a) Two-dimensional RIXS map near the W-L3 absorption edge (10208 eV); (b) corresponding energy transfer. The white dashed line indicates an emission photon energy of 8397.6 eV, corresponding to the ionization of a 2p electron and the formation of a $ {\rm{2 p}}^{-1}\varepsilon d $ intermediate state. In this process, the emission energy remains constant as the incident photon energy increases, leading to a progressive increase in energy transfer. The black dashed line indicates a constant energy transfer of 1809 eV, corresponding to the 2p-5d resonant scattering process via a $ {\rm{2 p}}^{-1}{\rm{5 d}} $ intermediate state, where the emission energy increases with increasing the incident energy while the energy transfer remains fixed.

    图 5  WSi2在10206—10222 eV入射光能量激发下的荧光谱, 对应图4(a)垂直剖线. 其中蓝色虚线对应2p-5d共振荧光峰(A峰); 红色虚线对应8397.6 eV的W-Lα1非共振荧光峰(B峰).

    Fig. 5.  Fluorescence spectra of WSi2 excited by incident photon energies from 10206 to 10222 eV, corresponding to the vertical cut shown in Figure 4(a).The blue dashed line corresponds to the 2p–5d resonance fluorescence peak (Peak A); the red dashed line corresponds to the non-resonance fluorescence peak of W-Lα1 at 8397.6 eV (Peak B).

    图 6  WSi2在10206—10222 eV入射光能量激发下以能量转移为横坐标的荧光谱, 对应图4(b)垂直剖线. 红蓝虚线与图5中含义相同.

    Fig. 6.  Fluorescence spectra of WSi2 excited with incident photon energies from 10206 to 10222 eV, displayed as a function of energy transfer, corresponding to the vertical cut shown in Figure 4(b). The red and blue dashed lines represent the same as those in Figure 5.

    图 7  荧光模式下的总荧光产额谱与HERFD谱. 高能量分辨率的HERFD光谱是积分W的Lα1(L3M5) 荧光线(8397.6 eV) 中心(图4(a)白色虚线)处0.6 eV能量窗口(8397—8398.4 eV)的XES数据得到的. 值得注意的是积分能量区间比初态能级的自然线宽7.2 eV要小很多. 而TFY-XAS光谱则是积分XES整个W-$ L\alpha_{1}\left(L_{3} M_{5}\right) $范围得到的.

    Fig. 7.  Total fluorescence yield (TFY) spectrum and high-energy resolution fluorescence detected (HERFD) spectrum in fluorescence mode. The high-resolution HERFD spectrum is obtained by integrating the X-ray emission spectroscopy (XES) data within a 0.6 eV energy window (8397–8398.4 eV) centered at the W $L_{\alpha_1}\;(L_3 M_5) $ fluorescence line at 8397.6 eV (indicated by the white dashed line in Figure 4(a)). Notably, the integrated energy window is much narrower than the natural linewidth 7.2 eV of the initial state. The TFY-XAS spectrum, on the other hand, is obtained by integrating the XES intensity over the entire W $L_{\alpha_1}\;(L_3 M_5) $ emission range.

    图 8  在入射X射线能量为10172 eV下记录了样品的非共振XES谱(a图)和利用式(3)重构的W-L3吸收边的重构XAS谱(b图)

    Fig. 8.  (a) Off-resonant X-ray emission spectrum (HEROS) of the sample recorded at an incident photon energy of 10172 eV. (b) Reconstructed X-ray absorption spectrum (XAS) at the W-L3 edge with Eq. (3).

  • [1]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685Google Scholar

    [2]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502Google Scholar

    [3]

    汪书兴, 李天钧, 黄 新朝, 朱林繁 2024 物理学报 73 1

    Wang S X, Li T J, Huang X C, Zhu L F 2024 Acta Phys. Sin. 73 1

    [4]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [5]

    Ablett J M, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno Th, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff J P 2019 J. Synchrotron Rad. 26 263Google Scholar

    [6]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Rad. 22 175Google Scholar

    [7]

    Linker T M, Halavanau A, Kroll T, Benediktovitch A, Zhang Y, Michine Y, Chuchurka S, Abhari Z, Ronchetti D, Fransson T, et al 2025 Nature 642 934Google Scholar

    [8]

    Kroll T, Weninger C, Alonso-Mori R, Sokaras D, Zhu D, Mercadier L, Majety V P, Marinelli A, Lutman A, Guetg M W, et al 2018 Phys. Rev. Lett. 120 133203Google Scholar

    [9]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, EngJohnsson P, Feifel R, et al 2022 Nature 608 488Google Scholar

    [10]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [11]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199Google Scholar

    [12]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445Google Scholar

    [13]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [14]

    Heeg K P, Evers J 2015 Phys. Rev. A 91 063803Google Scholar

    [15]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396Google Scholar

    [16]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008

    [17]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710Google Scholar

    [18]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702Google Scholar

    [19]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601Google Scholar

    [20]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602Google Scholar

    [21]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401Google Scholar

    [22]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063Google Scholar

    [23]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677Google Scholar

    [24]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703Google Scholar

    [25]

    Ketenoglu D 2022 X-Ray Spectrom. 51 422Google Scholar

    [26]

    Dorenbos P 2003 J. Phys. : Condens. Matter 15 6249Google Scholar

    [27]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Rad. 27 689Google Scholar

    [28]

    Khyzhun O Y, Strunskus T, Grünert W, Wöll C 2005 J. Electron Spectrosc. Relat. Phenom. 149 45Google Scholar

    [29]

    Kotani A, Kvashnina K O, Butorin S M, Glatzel P 2012 Eur. Phys. J. B 85 257Google Scholar

    [30]

    Maganas D, DeBeer S, Neese F 2017 Inorg. Chem. 56 11819Google Scholar

    [31]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003Google Scholar

    [32]

    Pan Y, Jing C, Wu Y 2019 Vacuum 167 374Google Scholar

    [33]

    Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven J A, Dousse J C, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A 2012 Rev. Sci. Instrum. 83 103105Google Scholar

    [34]

    Veldkamp J 1935 Physica 2 25Google Scholar

    [35]

    Briand J P 1981 Phys. Rev. Lett. 46 1625Google Scholar

    [36]

    Tulkki J, Aberg T 1980 J. Phys. B 13 3341Google Scholar

    [37]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255Google Scholar

    [38]

    Błachucki W, Hoszowska J, Dousse J C, Kayser Y, Stachura R, Tyrała K, Wojtaszek K, Sá J, Szlachetko J 2017 Spectrochim. Acta B 136 23Google Scholar

    [39]

    Hayashi H, Takeda R, Udagawa Y, Nakamura T, Miyagawa H, Shoji H, Nanao S, Kawamura N 2003 Phys. Rev. B 68 045122Google Scholar

    [40]

    Hayashi H, Udagawa Y, Caliebe W A, Kao C C 2003 Chem. Phys. Lett. 388 56

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, doi: 10.7498/aps.73.20240983
    [2] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用. 物理学报, doi: 10.7498/aps.73.20241009
    [3] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学. 物理学报, doi: 10.7498/aps.73.20241218
    [4] 周贤明, 尉静, 程锐, 梅策香, 曾利霞, 王兴, 梁昌慧, 赵永涛, 张小安. 数百MeV/u高能区C6+离子激发W的L壳层 X射线. 物理学报, doi: 10.7498/aps.70.20212322
    [5] 李博, 李玲, 朱敬军, 林炜平, 安竹. 采用薄靶方法测量低能电子致Al, Ti, Cu, Ag, Au元素K壳层电离截面与L壳层特征X射线产生截面. 物理学报, doi: 10.7498/aps.71.20220162
    [6] 周贤明, 尉静, 程锐, 赵永涛, 曾利霞, 梅策香, 梁昌慧, 李耀宗, 张小安, 肖国青. 近Bohr速度I20+离子在不同靶面上的L壳层X射线辐射. 物理学报, doi: 10.7498/aps.70.20201236
    [7] 孙言, 胡峰, 桑萃萃, 梅茂飞, 刘冬冬, 苟秉聪. 类硼S离子K壳层激发共振态的辐射和俄歇跃迁. 物理学报, doi: 10.7498/aps.68.20190481
    [8] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, doi: 10.7498/aps.66.176109
    [9] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁. 物理学报, doi: 10.7498/aps.66.123101
    [10] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞. 高能脉冲C6+离子束激发Ni靶的K壳层X射线. 物理学报, doi: 10.7498/aps.66.143401
    [11] 李群, 屈媛, 班士良. 缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响. 物理学报, doi: 10.7498/aps.66.077301
    [12] 周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青. 近玻尔速度氙离子激发钒的K壳层X射线. 物理学报, doi: 10.7498/aps.65.027901
    [13] 周贤明, 赵永涛, 程锐, 王兴, 雷瑜, 孙渊博, 王瑜玉, 徐戈, 任洁茹, 张小安, 梁昌慧, 李耀宗, 梅策香, 肖国青. H+和Ar11+激发Si的K壳层X射线发射研究. 物理学报, doi: 10.7498/aps.62.083201
    [14] 徐秋梅, 杨治虎, 杜树斌, 常宏伟, 张艳萍. 氧离子轰击引起钽的L壳层X射线发射截面的研究. 物理学报, doi: 10.7498/aps.60.093202
    [15] 张泊丽, 杨治虎, 杜树斌, 常宏伟, 薛迎丽, 宋张勇, 朱可欣, 田野. 20—50MeV O5+离子引起Au的L壳层X射线产生截面研究. 物理学报, doi: 10.7498/aps.58.6113
    [16] 刘学超, 陈之战, 施尔畏, 严成锋, 黄维, 宋力昕, 周克瑾, 崔明启, 贺博, 韦世强. Co掺杂ZnO薄膜的局域结构和电荷转移特性研究. 物理学报, doi: 10.7498/aps.58.498
    [17] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [18] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, doi: 10.7498/aps.54.3851
    [19] 赵辉, 郭梅芳, 董宝中. 小角x射线散射结晶聚合物过渡层厚度的测定. 物理学报, doi: 10.7498/aps.53.1247
    [20] 何绍堂, 淳于书泰, 沈华忠, 尤永碌, 张启仁, 杜风英, 顾元元, 杨上金, 黄文忠, 蔡玉琴, 孔令华, 谷渝秋, 孙永良, 何安, 刘素萍. 双爆炸膜内壳层光电离X射线激光实验研究. 物理学报, doi: 10.7498/aps.42.1933
计量
  • 文章访问数:  649
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-20
  • 修回日期:  2025-07-15
  • 上网日期:  2025-07-24

/

返回文章
返回