搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内壳层体系的X射线腔量子光学

汪书兴 李天钧 黄新朝 朱林繁

引用本文:
Citation:

内壳层体系的X射线腔量子光学

汪书兴, 李天钧, 黄新朝, 朱林繁
cstr: 32037.14.aps.73.20241218

X-ray cavity quantum optics of inner-shell transitions

Wang Shu-Xing, Li Tian-Jun, Huang Xin-Chao, Zhu Lin-Fan
cstr: 32037.14.aps.73.20241218
PDF
HTML
导出引用
  • 随着X射线光源品质的提升, X射线波段的量子调控成为了新兴的前沿领域, 基于薄膜平面腔的X射线腔量子光学是其中一个重要分支. X射线腔量子光学研究始于原子核跃迁体系, 近期兴起了调控原子内壳层跃迁的研究工作. 原子内壳层跃迁存在丰富的候选体系和退激通道, 极大地拓宽了X射线腔量子光学的研究范围. 此外, 内壳层激发及其退激通道对应着多种X射线谱学表征技术, 促进X射线腔量子光学和谱学技术的融合, 有望促成X射线谱学新技术的出现. 本文概述了基于原子内壳层跃迁的X射线腔量子光学, 介绍了基本的实验体系和实验方法、经典和量子理论模型以及已经实现的一些量子光学现象. 最后, 本文简要介绍了内壳层X射线腔量子光学仍需要解决的一些问题, 同时展望了未来的发展方向.
    Over the past decade, X-ray quantum optics has emerged as a dynamic research field, driven by significant advancements in X-ray sources such as next-generation synchrotron radiation facilities and X-ray free-electron lasers, as well as improvements in X-ray methodologies and sample fabrication techniques. One of the most successful platforms in this field is the X-ray planar thin-film cavity, also known as the X-ray cavity QED setup. To date, most studies in X-ray cavity quantum optics have focused on Mössbauer nuclear resonances. However, this approach is constrained by the limited availability of suitable nuclear isotopes and the lack of universal applicability. Recently, experimental realizations of X-ray cavity quantum control in atomic inner-shell transitions have demonstrated that cavity effects can simultaneously modify transition energies and core-hole lifetimes. These pioneering studies suggest that X-ray cavity quantum optics based on inner-shell transitions will become a promising new platform. Notably, the core-hole state is a fundamental concept in various modern X-ray spectroscopic techniques. Therefore, integrating X-ray quantum optics with X-ray spectroscopy holds the potential to open new frontiers in the field of core-level spectroscopy.In this review, we introduce the experimental systems used in X-ray cavity quantum optics with inner-shell transitions, covering cavity structures, sample fabrications, and experimental methodologies. We explain that X-ray thin-film cavity experiments require high flux, high energy resolution, minimal beam divergence, and precise angular control, necessitating the use of synchrotron radiations. Grazing reflectivity and fluorescence measurements are described in detail, along with a brief introduction to resonant inelastic X-ray scattering techniques. The review also outlines simulation tools, including the classical Parratt algorithm, semi-classical matrix formalism, quantum optical theory based on the Jaynes-Cummings model, and the quantum Green’s function method. We discuss the similarities and unique features of electronic inner-shell transitions and highlight recent advancements, focusing on cavity-induced phenomena such as collective Lamb shift, Fano interference, core-hole lifetime control, etc. Observables such as reflectivity and fluorescence spectra play a central role in these studies. Finally, we review and discuss potential future directions for the field. Designing novel cavities is crucial for addressing current debates regarding cavity effects in inner-shell transitions and uncovering new quantum optical phenomena. Integrating modern X-ray spectroscopies with X-ray cavity quantum optics represents a promising research frontier with significant application potential. Furthermore, X-ray free-electron lasers, with much higher pulse intensity and shorter pulse duration, are expected to propel X-ray cavity quantum optics into the nonlinear and multiphoton regimes, opening new avenues for exploration.
      通信作者: 黄新朝, xinchao.huang@xfel.eu ; 朱林繁, lfzhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12334010, U1932207)资助的课题.
      Corresponding author: Huang Xin-Chao, xinchao.huang@xfel.eu ; Zhu Lin-Fan, lfzhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334010, U1932207).
    [1]

    潘建伟 2024 物理学报 73 010301Google Scholar

    Pan J W 2024 Acta Phys. Sin. 73 010301Google Scholar

    [2]

    Adams B W, Buth C, Cavaletto S M, Cavaletto, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A, Röhlsberger R, Rostovtsev Y, Tamasaku K 2013 J. Mod. Opt. 60 2Google Scholar

    [3]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685Google Scholar

    [4]

    Röhlsberger R, Evers J, Shwartz S 2020 Synchrotron Light Sources and Free-Electron Lasers: Ac-celerator Physics, Instrumentation and Science Applications, chap. Quantum and Nonlinear Optics with Hard X-Rays (Cham: Springer International Publishing) pp1399–1431

    [5]

    Röhlsberger R, Evers J 2021 Modern Mössbauer Spectroscopy, chap. Quantum Optical Phenomena in Nuclear Resonant Scattering (Topics in Applied Physics, Vol. 137) (Singapore: Springer) pp105–171

    [6]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502Google Scholar

    [7]

    Röntgen W C 1895 Sitzung Physikal-Medicin Gesellschaft 137 132

    [8]

    Planck M 1901 Annalen der physik 4 553Google Scholar

    [9]

    ESRF website. https:www.esrf.fr/ [2024-8-30]

    [10]

    APS website. https://www.aps.anl.gov/ [2024-8-30]

    [11]

    SPring-8 website. http://www.spring8.or.jp/ja/ [2024-8-30]

    [12]

    PETRA-III website. https://photon-science.desy.de/facilities/petra_iii/index_eng. html [2024-8-30]

    [13]

    Raimondi P, Carmignani N, Carver L R, Chavanne J, Farvacque L, Le Bec G, Martin D, Liuzzo S M, Perron T, White S 2021 Phys. Rev. Accel. Beams 24 110701Google Scholar

    [14]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [15]

    Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932Google Scholar

    [16]

    Huang Z, Ruth R D 2006 Phys. Rev. Lett. 96 144801Google Scholar

    [17]

    Margraf R, Robles R, Halavanau A, Kryzywinski J, Li K, MacArthur J, Osaka T, Sakdinawat A, Sato T, Sun Y, Tamasaku K, Huang Z, Marcus G, Zhu D 2023 Nat. Photonics 17 878Google Scholar

    [18]

    Adams B, Aeppli G, Allison T, Baron A Q, Bucksbaum P, Chumakov A I, Corder C, Cramer S P, DeBeer S, Ding Y, Evers J, Frisch J, Fuchs M, Grübel G, Hastings J B, Heyl C M, Holberg L, Huang Z, Ishikawa T, Kaldun A, Kim K J, Kolodziej T, Krzywinski J, Li Z, Liao W T, Lindberg R, Madsen A, Maxwell T, Monaco G, Nelson K, Palffy A, Porat G, Qin W, Raubenheimer T, Reis D A, Röhlsberger R, Santra R, Schoenlein R, Schünemann V, Shpyrko O, Shvyd’ko Y, Shwartz S, Singer A, Sinha S K, Sutton M, Tamasaku K, Wille H C, Yabashi M, Ye J, Zhu D 2019 arXiv: 1903.09317 [physics.ins-det]

    [19]

    Brown M, Peierls R E, Stern E A 1977 Phys. Rev. B 15 738Google Scholar

    [20]

    Wei P S P, Lytle F W 1979 Phys. Rev. B 19 679Google Scholar

    [21]

    Mössbauer R L 1958 Zeitschrift für Physik 151 124Google Scholar

    [22]

    Röhlsberger R 2004 Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer Science & Business Media) pp1–312

    [23]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601Google Scholar

    [24]

    Purcell E 1946 Phys. Rev. 69 681Google Scholar

    [25]

    Scully M O 2009 Phys. Rev. Lett. 102 143601Google Scholar

    [26]

    Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R 2010 Science 328 1248Google Scholar

    [27]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199Google Scholar

    [28]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [29]

    Heeg K P, Evers J 2015 Phys. Rev. A 91 063803Google Scholar

    [30]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396Google Scholar

    [31]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008Google Scholar

    [32]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710Google Scholar

    [33]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702Google Scholar

    [34]

    Heeg K P, Wille H C, Schlage K, Guryeva T, Schumacher D, Uschmann I, Schulze K S, Marx B, Kämpfer T, Paulus G G, Röhlsberger R, Evers J 2013 Phys. Rev. Lett. 111 073601Google Scholar

    [35]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401Google Scholar

    [36]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445Google Scholar

    [37]

    Heeg K P, Haber J, Schumacher D, Bocklage L, Wille H C, Schulze K S, Loetzsch R, Uschmann I, Paulus G G, Rüffer R, Röhlsberger R, Evers J 2015 Phys. Rev. Lett. 114 203601Google Scholar

    [38]

    Kong X, Pálffy A 2016 Phys. Rev. Lett. 116 197402Google Scholar

    [39]

    Haber J, Kong X, Strohm C, Willing S, Gollwitzer J, Bocklage L, Rüffer R, Pálffy A, Röhlsberger R 2017 Nat. Photonics 11 720Google Scholar

    [40]

    Lentrodt D, Diekmann O, Keitel C H, Rotter S, Evers J 2023 Phys. Rev. Lett. 130 263602Google Scholar

    [41]

    Velten S, Bocklage L, Zhang X, Schlage K, Panchwanee A, Sadashivaiah S, Sergeev I, Leupold O, Chumakov A I, Kocharovskaya O, Röhlsberger R 2024 Sci. Adv. 10 eadn9825Google Scholar

    [42]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [43]

    Ivchenko E, Poddubny A 2013 Phys. Solid State 55 905Google Scholar

    [44]

    Cowan P L, Golovchenko J A, Robbins M F 1980 Phys. Rev. Lett. 44 1680Google Scholar

    [45]

    Zegenhagen J, Kazimirov A 2013 X-ray Standing Wave Technique: Principles and Applications (Vol. 7) (Singapore: World Scientific) pp122–131

    [46]

    Kossel W, Loeck V, Voges H 1935 Zeitschrift für Physik 94 139Google Scholar

    [47]

    Jonnard P, André J M, Bonnelle C, Bridou F, Pardo B 2002 Appl. Phys. Lett. 81 1524Google Scholar

    [48]

    André J M, Jonnard P 2010 E. Phys. J. D 57 411Google Scholar

    [49]

    André J, Jonnard P, Le Guen K, Bridou F 2015 Phys. Scr. 90 085503Google Scholar

    [50]

    Li W B, Yuan X F, Zhu J T, Zhu J, Wang Z S 2014 Phys. Scr. 90 015804Google Scholar

    [51]

    Feng X P, Ujihara K 1990 Phys. Rev. A 41 2668Google Scholar

    [52]

    Ujihara K 1993 Opt. Commun. 101 179Google Scholar

    [53]

    de Boer D K G 1991 Phys. Rev. B 44 498Google Scholar

    [54]

    Ghose S K, Dev B N, Gupta A 2001 Phys. Rev. B 64 233403Google Scholar

    [55]

    Pfeiffer F, David C, Burghammer M, Riekel C, Salditt T 2002 Science 297 230Google Scholar

    [56]

    Salditt T, Krüger S P, Fuhse C, Bähtz C 2008 Phys. Rev. Lett. 100 184801Google Scholar

    [57]

    Okamoto K, Noma T, Komoto A, Kubo W, Takahashi M, Iida A, Miyata H 2012 Phys. Rev. Lett. 109 233907Google Scholar

    [58]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677Google Scholar

    [59]

    Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R 2019 Phys. Rev. Lett. 122 123608Google Scholar

    [60]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063Google Scholar

    [61]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602Google Scholar

    [62]

    Gu B, Cavaletto S M, Nascimento D R, Khalil M, Govind N, Mukamel S 2021 Chem. Sci. 12 8088Google Scholar

    [63]

    Gu B, Nenov A, Segatta F, Garavelli M, Mukamel S 2021 Phys. Rev. Lett. 126 053201Google Scholar

    [64]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703Google Scholar

    [65]

    Vettier C 2012 Eur. Phys. J. Spec. Top. 208 3Google Scholar

    [66]

    Fink J, Schierle E, Weschke E, Geck J 2013 Rep. Prog. Phys. 76 056502Google Scholar

    [67]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255Google Scholar

    [68]

    Van Bokhoven J A, Lamberti C 2016 X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications(Vol. 1) (John Wiley & Sons) pp125–149

    [69]

    Kotani A, Shin S 2001 Rev. Mod. Phys. 73 203Google Scholar

    [70]

    Schülke W 2007 Electron Dynamics by Inelastic X-Ray Scattering, vol. 7 (Oxford University Press) pp377–485

    [71]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [72]

    CXRO website. https://henke.lbl.gov/optical_constants/.[2024-11-12]

    [73]

    Shvyd’Ko Y 2004 X-Ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer Science & Business Media) pp 215–286

    [74]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-Ray Physics (John Wiley & Sons) pp207–238

    [75]

    Heeg K P 2014 Ph. D. Dissertation (Heidelberg: Ruperto-Carola-Universität of Heidelberg

    [76]

    Kong X 2016 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [77]

    Haber J F A 2017 Ph. D. Dissertation (Hamburg: Universität Hamburg

    [78]

    黄新朝 2020 博士学位论文 (合肥: 中国科学技术大学)

    Huang X C 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [79]

    Lentrodt D 2021 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [80]

    李天钧 2023 博士学位论文 (合肥: 中国科学技术大学)

    Li T J 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [81]

    马子茹 2023 博士学位论文 (合肥: 中国科学技术大学)

    Ma Z R 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [82]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Radiat. 27 689Google Scholar

    [83]

    Spiller E, Segmüller A 1974 Appl. Phys. Lett. 24 60Google Scholar

    [84]

    唐伟忠 1998 薄膜材料制备原理, 技术及应用 (北京: 冶金工业出版社)第1—323页

    Tang W Z 1998 Principles, Technologies, and Applications of Thin Film Material Preparation (Beijing: Metallurgical Industry Press) pp1–323

    [85]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962 [郑伟涛 2004 薄膜材料与薄膜技术 (北京: 化学工业出版社) 第1—962页]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962

    [86]

    刘小虹, 颜肖慈, 罗明道, 李伟 2002 自然杂志 24 36Google Scholar

    Liu X H, Yan X C, Luo M D, Li W 2002 Chin. J. Nat. 24 36Google Scholar

    [87]

    Phua L, Phuoc N, Ong C 2013 J. Alloys Compd. 553 146Google Scholar

    [88]

    Khyzhun O Y, Solonin Y M, Dobrovolsky V 2001 J. Alloys Compd. 320 1Google Scholar

    [89]

    Shahin A M, Grandjean F, Long G J, Schuman T P 2005 Chem. Mater. 17 315Google Scholar

    [90]

    P23 bealine of PETRA-III. https: //photon-science.desy.de/facilities/petra_iii/beamlines/p23_in_situ_x_ray_diffraction_and_imaging/beamline_layout/index_eng.html [2024-11-12]

    [91]

    Chumakov A I, Shvyd’ko Y, Sergueev I, Bessas D, Rüffer R 2019 Phys. Rev. Lett. 123 097402Google Scholar

    [92]

    Potapkin V, Chumakov A I, Smirnov G V, Celse J P, Rüffer R, McCammon C, Dubrovinsky L 2012 J. Synchrotron Radiat. 19 559Google Scholar

    [93]

    Rüffer R, Chumakov A I 1996 Hyper. Int. 97 589Google Scholar

    [94]

    Li W B, Zhu J T, Ma X Y, Li H C, Wang H C, Sawhney K J, Wang Z S 2012 Rev. Sci. Instrum. 83 053114Google Scholar

    [95]

    Hoszowska J, Dousse J C, Kern J, Rhême C 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 376 129Google Scholar

    [96]

    Kleymenov E, Bokhoven J A V, David C, Glatzel P, Janousch M, Alonso-Mori R, Studer M, Willi-mann M, Bergamaschi A, Henrich B, Nachtegaal M 2011 Rev. Sci. Instrum. 82 065107Google Scholar

    [97]

    Jagodzinski P, Szlachetko J, Dousse J C, Hoszowska J, Szlachetko M, Vogelsang U, Banaś D, Pak-endorf T, Meents A, van Bokhoven J A, Kubala-Kukuś A, Pajek M, Nachtegaal M 2019 Rev. Sci. Instrum. 90 063106Google Scholar

    [98]

    Sawhney K J S, Dolbnya I P, Tiwari M K, Alianelli L, Scott S M, Preece G M, Pedersen U K, Walton R D 2010 AIP Conf. Proc. 1234 387Google Scholar

    [99]

    Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven J A, Grunwaldt J 2010 AIP Conf. Proc. 1234 251Google Scholar

    [100]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Radiat. 22 175Google Scholar

    [101]

    Parratt L G 1954 Phys. Rev. 95 359Google Scholar

    [102]

    Röhlsberger R, Klein T, Schlage K, Leupold O, Rüffer R 2004 Phys. Rev. B 69 235412Google Scholar

    [103]

    Tomaš M S 1995 Phys. Rev. A 51 2545Google Scholar

    [104]

    Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675

    [105]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [106]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [107]

    Fano U, Cooper J W 1965 Phys. Rev. 137 A1364Google Scholar

    [108]

    Li T J, Huang X C, Ma Z R, Li B, Zhu L F 2022 Phys. Rev. Res. 4 023081Google Scholar

    [109]

    Li T J, Huang X C, Ma Z R, Li B, Wang X Y, Zhu L F 2023 Phys. Rev. A 108 033715Google Scholar

    [110]

    Dutra S M, Knight P L 1996 Phys. Rev. A 53 3587Google Scholar

    [111]

    Bauer M 2014 Phys. Chem. Chem. Phys. 16 13827Google Scholar

    [112]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003Google Scholar

    [113]

    Gel’mukhanov F, Ågren H 1999 Phys. Rep. 312 87Google Scholar

    [114]

    Lohse L M, Andrejić P, Velten S, Vassholz M, Neuhaus C, Negi A, Panchwanee A, Sergeev I, Pálffy A, Salditt T, Röhlsberger R 2024 arXiv: 2403.06508 [quant-ph]

    [115]

    Chumakov A I, Baron A Q, Sergueev I, Strohm C, Leupold O, Shvyd’ko Y, Smirnov G V, Rüffer R, Inubushi Y, Yabashi M, Tono K, Kudo T, Ishikawa T 2018 Nat. Phys. 14 261Google Scholar

    [116]

    Fukuzawa H, Son S K, Motomura K, Mondal S, Nagaya K, Wada S, Liu X J, Feifel R, Tachibana T, Ito Y, Kimura M, Sakai T, Matsunami K, Hayashita H, Kajikawa J, Johnsson P, Siano M, Kukk E, Rudek B, Erk B, Foucar L, Robert E, Miron C, Tono K, Inubushi Y, Hatsui T, Yabashi M, Yao M, Santra R, Ueda K 2013 Phys. Rev. Lett. 110 173005Google Scholar

    [117]

    LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R, Berrah N 2021 Phys. Rev. Lett. 127 213202Google Scholar

    [118]

    Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T 2018 Phys. Rev. Lett. 121 083901Google Scholar

    [119]

    Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M 2015 Nature 524 446Google Scholar

    [120]

    Wu B, Wang T, Graves C E, Zhu D, Schlotter W, Turner J, Hellwig O, Chen Z, Dürr H, Scherz A, Stöhr J 2016 Phys. Rev. Lett. 117 027401Google Scholar

    [121]

    Chen Z, Higley D J, Beye M, Hantschmann M, Mehta V, Hellwig O, Mitra A, Bonetti S, Bucher M, Carron S, Chase T, Jal E, Kukreja R, Liu T, Reid A H, Dakovski G L, Föhlisch A, Schlotter W F, Dürr H A, Stöhr J 2018 Phys. Rev. Lett. 121 137403Google Scholar

    [122]

    Liu J, Li Y, Wang L, Zhao J, Yuan J, Kong X 2021 Phys. Rev. A 104 L031101Google Scholar

    [123]

    Mercadier L, Benediktovitch A, Weninger C, Blessenohl M A, Bernitt S, Bekker H, Dobrodey S, Sanchez-Gonzalez A, Erk B, Bomme C, Boll R, Yin Z, Majety V P, Steinbrügge R, Khalal M A, Penent F, Palaudoux J, Lablanquie P, Rudenko A, Rolles D, Crespo López-Urrutia J R, Rohringer N 2019 Phys. Rev. Lett. 123 023201Google Scholar

    [124]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström J M 2022 Nature 608 488Google Scholar

    [125]

    Cui J J, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang S B 2023 Phys. Rev. Lett. 131 043201Google Scholar

    [126]

    Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J, Follath R, Kavčič M, Knopp G, Rehanek J, Błachucki W, Delcey M G, Lundberg M, Tyrała K, Zhu D, Alonso-Mori R, Abela R, Sá J, Szlachetko J 2019 Nat. Commun. 10 4761Google Scholar

    [127]

    Rohringer N 2019 Philos. Trans. R. Soc. A 377 20170471Google Scholar

    [128]

    Matsuda I, Arafune R 2023 Nonlinear X-Ray Spectroscopy for Materials Science (Springer) pp1–160

    [129]

    Shwartz S, Harris S E 2011 Phys. Rev. Lett. 106 080501Google Scholar

    [130]

    Shwartz S, Coffee R N, Feldkamp J M, Feng Y, Hastings J B, Yin G Y, Harris S E 2012 Phys. Rev. Lett. 109 013602Google Scholar

    [131]

    Shwartz S, Fuchs M, Hastings J B, Inubushi Y, Ishikawa T, Katayama T, Reis D A, Sato T, Tono K, Yabashi M, Yudovich S, Harris S E 2014 Phys. Rev. Lett. 112 163901Google Scholar

    [132]

    Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C 2015 Nature 520 205Google Scholar

    [133]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Haddad A A, Gessini A, Maznev A A, Cirelli C, Gerber S, Pedrini B, Mancini G F, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y, Mozzanica A, Johnson P J M, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, Lemke H T, Milne C J, David C, Torre R, Chergui M, Nelson K A, Masciovecchio C, Staub U, Patthey L, Svetina C 2021 Nat. Photonics 15 499Google Scholar

    [134]

    Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus J L, Li C, Bajt S C V, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra K K, Möller J, Zozulya A, Shayduk R, Lu W, Braue F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, anders M, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, Chapman H N 2023 Phys. Rev. Lett. 130 173201Google Scholar

    [135]

    Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M 2019 J. Synchrotron Radiat. 26 2050Google Scholar

    [136]

    Klein Y, Tripathi A K, Strizhevsky E, Capotondi F, De Angelis D, Giannessi L, Pancaldi M, Pedersoli E, Prince K C, Sefi O, Kim Y Y, Vartanyants I A, Shwartz S 2023 Phys. Rev. A 107 053503Google Scholar

  • 图 1  实验体系原理图, 反射谱和荧光谱插图取自文献[61], 共振发射谱插图取自文献[82]

    Fig. 1.  Sketch of the experimental scheme, the reflectivity and fluorescence maps refer to Ref. [61], and the emission spectra map following inelastic scattering is taken from Ref. [82].

    图 2  WSi2内壳层白线跃迁示意图

    Fig. 2.  Schematic diagram of inner-shell transitions in WSi2.

    图 3  PETRA III光源P23线站布局示意图[90]

    Fig. 3.  Layout of the P23 beamline of the PETRA III synchrotron[90].

    图 4  Parratt迭代方法示意图. 其中$ n_i $为第i层介质对X射线的折射率, $ d_i $为第i层介质的厚度, $ r_{i-1,i} $和$ t_{i-1,i} $为X射线在介质($i-1 $)与i界面处的反射和透射系数

    Fig. 4.  Illustration of Parratt’s method. $ n_i $ and $ d_i $ are the refractive indices and thickness of the$ i\text{-}\mathrm{th} $ layer, $ r_{i-1,i} $ and $ t_{i-1,i} $ are the Fresnel coefficients for reflection and transmission at the interface between $ (i-1) $ and $ i\text{-}\mathrm{th} $ layers.

    图 5  平面腔中场幅度分布示意图

    Fig. 5.  Sketch map of field amplitudes in the cavity.

    图 6  表面平行度较好(a)和较差的(b)的反射光图像, 入射光斑尺寸横向大于纵向

    Fig. 6.  Reflected X-ray patterns from the cavity samples with (a) flat surface and (b) distorted surface, respectively. The horizontal beam size is larger than the vertical one.

    图 7  (a)结构Pt(2.0 nm)/C(18.0 nm)/WSi2(2.0 nm)/C(18.0 nm)/Pt(16.0 nm)/Si100(infinitely thick)的薄膜平面腔的X射线反射率曲线; (b)不同角度下腔内场强随着z方向深度的分布, 其中白色实线描绘了不同膜层的边界

    Fig. 7.  (a) Rocking curve of the cavity with the structure of Pt(2.0 nm)/C(18.0 nm)/WSi2(2.0 nm)/C(18.0 nm)/Pt(16.0 nm)/Si100(infinitely thick); (b) the field intensity distribution inside the cavity. The white solid lines dipict the boundaries of different layers.

    图 8  入射X射线在共振能量和偏离共振能量下的摇摆曲线

    Fig. 8.  Rocking curves under on-resonance and off-resonance X-ray energies.

    图 9  (a) Parratt迭代、(b) 传输矩阵以及(c) 格林函数方法模拟的平面腔一阶模式角附近的反射率二维谱

    Fig. 9.  Simulated two-dimensional reflectivity maps of the cavity around the first mode angle using (a) the Parratt’s recursion, (b) the transfer matrix method, and (c) the Green’s function framework, respectively.

    图 10  3种方法计算的反射谱对比, 入射角度相对于一阶模式角分别为(a) –0.001°角失谐、(b) 0° 以及(c) 0.001°角失谐

    Fig. 10.  Comparisons of reflectivity spectra at (a) –0.001°, (b) 0° and (c) 0.001° offsets deviate from the first mode angle.

    图 11  薄膜平面腔内的57Fe核跃迁的集体兰姆移位与超辐射速率增强效应, 腔结构与图8中使用的一致

    Fig. 11.  Collective Lamb shift and superradiance of Mössbauer transition of 57Fe due to the cavity effect. The cavity structure used here is same to Fig. 8.

    图 12  实验测量与理论模拟的X射线反射二维谱 (a)实验测量结果; (b)实验数据扣除吸收边; (c)理论模拟结果; (d)理论模拟扣除吸收边

    Fig. 12.  X-ray reflection two-dimensional spectrum of experimental measurements and theoretical simulations: (a) Experimental reflectivity map; (b) experimental data by exclusion of the absorption edge; (c) simulated reflectivity map; (d) simulated map by exclusion of the absorption edge.

    图 13  3种腔结构下实验测量的模式角度下的反射谱及拟合曲线, 其中数据点和红色虚线分别为实验测量结果与拟合结果, 绿色实线为实验数据去除拟合的吸收边得到的法诺线形, 数据引自文献[61]

    Fig. 13.  Measured reflectivity spectra at the first mode angle. The dots are experimental data, and the dashed lines are the fit to data according to the theoretical model. The solid lines present the Fano profiles in the reflectivity spectra by subtracting the fitted edge components from the experimental data. The squares of $ \mathrm{Im}(q) $ for each data set are also presented. Data are quoted from Ref. [61].

    图 14  不同57Fe占比的原子核层在(a)欠耦合腔和(b)过耦合腔中对入射角度为10 μrad负失谐、模式角与10 μrad正失谐的反射谱

    Fig. 14.  Reflectivity spectra at the first mode angle and $ \pm 10\; $μrad offsets of (a) undercritical cavities and (b) overcritical cavities with different fractions of 57Fe.

    图 15  SDD探测器采集的荧光全谱

    Fig. 15.  Full fluorescence spectrum collected by the SDD detector.

    图 16  (a) 原子层位置处的场强模拟值与X射线能量及入射角度的关系, 使用的腔结构与图7相同; (b) 根据互易定理模拟的荧光二维谱; (c) 实验测量的荧光二维谱

    Fig. 16.  (a) Simulated field intensity at the atom position for the cavity in Fig. 7; (b) simulated fluorescence 2D map according to the reciprocal theory; (c) the measured fluorescence 2D map.

    图 17  (a)一阶、(b)三阶、(c)五阶模式角以及(d)远离腔模式角度下的荧光谱及拟合曲线, 远离腔模式时, 洛伦兹响应的线宽为原子本身的线宽3.6 eV, 而在模式角度下, 辐射速率受到腔效应增强, 线宽显著增大, 数据引自[60]

    Fig. 17.  Selected fluorescence spectra at the (a) 1st, (b) 3rd, (c) 5th mode angles, and (d) offset angle far from the mode angles. The experimental spectra are fitted by the theoretical model, and the widths of the Lorentzian response are presented. Note that the response features as the natural linewidth of the atomic transition at off-resonant angles while the width is strongly altered by the cavity effect at mode angles. Data are quoted from Ref. [60].

    图 18  远场下不同出射角度的Co Kα荧光辐射强度, 在第1阶和第3阶腔模式角度下观测到了明显的荧光强度增强. 黑色实线为基于互易定理的模拟结果, 蓝色点线是使用X射线激发空穴态, 红色点线是使用电子束激发空穴态, 数据引自[58]

    Fig. 18.  Far-field fluorescence intensities at different emission angles. The directional emission is observed at the first and third cavity modes. The blue and red dotted lines are experimental data resulted from X-ray excitation and electron beam excitation, respectively. The solid black line is the simulation based on the reciprocity theorem. Data are digitized from [58].

  • [1]

    潘建伟 2024 物理学报 73 010301Google Scholar

    Pan J W 2024 Acta Phys. Sin. 73 010301Google Scholar

    [2]

    Adams B W, Buth C, Cavaletto S M, Cavaletto, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A, Röhlsberger R, Rostovtsev Y, Tamasaku K 2013 J. Mod. Opt. 60 2Google Scholar

    [3]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685Google Scholar

    [4]

    Röhlsberger R, Evers J, Shwartz S 2020 Synchrotron Light Sources and Free-Electron Lasers: Ac-celerator Physics, Instrumentation and Science Applications, chap. Quantum and Nonlinear Optics with Hard X-Rays (Cham: Springer International Publishing) pp1399–1431

    [5]

    Röhlsberger R, Evers J 2021 Modern Mössbauer Spectroscopy, chap. Quantum Optical Phenomena in Nuclear Resonant Scattering (Topics in Applied Physics, Vol. 137) (Singapore: Springer) pp105–171

    [6]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502Google Scholar

    [7]

    Röntgen W C 1895 Sitzung Physikal-Medicin Gesellschaft 137 132

    [8]

    Planck M 1901 Annalen der physik 4 553Google Scholar

    [9]

    ESRF website. https:www.esrf.fr/ [2024-8-30]

    [10]

    APS website. https://www.aps.anl.gov/ [2024-8-30]

    [11]

    SPring-8 website. http://www.spring8.or.jp/ja/ [2024-8-30]

    [12]

    PETRA-III website. https://photon-science.desy.de/facilities/petra_iii/index_eng. html [2024-8-30]

    [13]

    Raimondi P, Carmignani N, Carver L R, Chavanne J, Farvacque L, Le Bec G, Martin D, Liuzzo S M, Perron T, White S 2021 Phys. Rev. Accel. Beams 24 110701Google Scholar

    [14]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [15]

    Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932Google Scholar

    [16]

    Huang Z, Ruth R D 2006 Phys. Rev. Lett. 96 144801Google Scholar

    [17]

    Margraf R, Robles R, Halavanau A, Kryzywinski J, Li K, MacArthur J, Osaka T, Sakdinawat A, Sato T, Sun Y, Tamasaku K, Huang Z, Marcus G, Zhu D 2023 Nat. Photonics 17 878Google Scholar

    [18]

    Adams B, Aeppli G, Allison T, Baron A Q, Bucksbaum P, Chumakov A I, Corder C, Cramer S P, DeBeer S, Ding Y, Evers J, Frisch J, Fuchs M, Grübel G, Hastings J B, Heyl C M, Holberg L, Huang Z, Ishikawa T, Kaldun A, Kim K J, Kolodziej T, Krzywinski J, Li Z, Liao W T, Lindberg R, Madsen A, Maxwell T, Monaco G, Nelson K, Palffy A, Porat G, Qin W, Raubenheimer T, Reis D A, Röhlsberger R, Santra R, Schoenlein R, Schünemann V, Shpyrko O, Shvyd’ko Y, Shwartz S, Singer A, Sinha S K, Sutton M, Tamasaku K, Wille H C, Yabashi M, Ye J, Zhu D 2019 arXiv: 1903.09317 [physics.ins-det]

    [19]

    Brown M, Peierls R E, Stern E A 1977 Phys. Rev. B 15 738Google Scholar

    [20]

    Wei P S P, Lytle F W 1979 Phys. Rev. B 19 679Google Scholar

    [21]

    Mössbauer R L 1958 Zeitschrift für Physik 151 124Google Scholar

    [22]

    Röhlsberger R 2004 Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer Science & Business Media) pp1–312

    [23]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601Google Scholar

    [24]

    Purcell E 1946 Phys. Rev. 69 681Google Scholar

    [25]

    Scully M O 2009 Phys. Rev. Lett. 102 143601Google Scholar

    [26]

    Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R 2010 Science 328 1248Google Scholar

    [27]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199Google Scholar

    [28]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [29]

    Heeg K P, Evers J 2015 Phys. Rev. A 91 063803Google Scholar

    [30]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396Google Scholar

    [31]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008Google Scholar

    [32]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710Google Scholar

    [33]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702Google Scholar

    [34]

    Heeg K P, Wille H C, Schlage K, Guryeva T, Schumacher D, Uschmann I, Schulze K S, Marx B, Kämpfer T, Paulus G G, Röhlsberger R, Evers J 2013 Phys. Rev. Lett. 111 073601Google Scholar

    [35]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401Google Scholar

    [36]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445Google Scholar

    [37]

    Heeg K P, Haber J, Schumacher D, Bocklage L, Wille H C, Schulze K S, Loetzsch R, Uschmann I, Paulus G G, Rüffer R, Röhlsberger R, Evers J 2015 Phys. Rev. Lett. 114 203601Google Scholar

    [38]

    Kong X, Pálffy A 2016 Phys. Rev. Lett. 116 197402Google Scholar

    [39]

    Haber J, Kong X, Strohm C, Willing S, Gollwitzer J, Bocklage L, Rüffer R, Pálffy A, Röhlsberger R 2017 Nat. Photonics 11 720Google Scholar

    [40]

    Lentrodt D, Diekmann O, Keitel C H, Rotter S, Evers J 2023 Phys. Rev. Lett. 130 263602Google Scholar

    [41]

    Velten S, Bocklage L, Zhang X, Schlage K, Panchwanee A, Sadashivaiah S, Sergeev I, Leupold O, Chumakov A I, Kocharovskaya O, Röhlsberger R 2024 Sci. Adv. 10 eadn9825Google Scholar

    [42]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [43]

    Ivchenko E, Poddubny A 2013 Phys. Solid State 55 905Google Scholar

    [44]

    Cowan P L, Golovchenko J A, Robbins M F 1980 Phys. Rev. Lett. 44 1680Google Scholar

    [45]

    Zegenhagen J, Kazimirov A 2013 X-ray Standing Wave Technique: Principles and Applications (Vol. 7) (Singapore: World Scientific) pp122–131

    [46]

    Kossel W, Loeck V, Voges H 1935 Zeitschrift für Physik 94 139Google Scholar

    [47]

    Jonnard P, André J M, Bonnelle C, Bridou F, Pardo B 2002 Appl. Phys. Lett. 81 1524Google Scholar

    [48]

    André J M, Jonnard P 2010 E. Phys. J. D 57 411Google Scholar

    [49]

    André J, Jonnard P, Le Guen K, Bridou F 2015 Phys. Scr. 90 085503Google Scholar

    [50]

    Li W B, Yuan X F, Zhu J T, Zhu J, Wang Z S 2014 Phys. Scr. 90 015804Google Scholar

    [51]

    Feng X P, Ujihara K 1990 Phys. Rev. A 41 2668Google Scholar

    [52]

    Ujihara K 1993 Opt. Commun. 101 179Google Scholar

    [53]

    de Boer D K G 1991 Phys. Rev. B 44 498Google Scholar

    [54]

    Ghose S K, Dev B N, Gupta A 2001 Phys. Rev. B 64 233403Google Scholar

    [55]

    Pfeiffer F, David C, Burghammer M, Riekel C, Salditt T 2002 Science 297 230Google Scholar

    [56]

    Salditt T, Krüger S P, Fuhse C, Bähtz C 2008 Phys. Rev. Lett. 100 184801Google Scholar

    [57]

    Okamoto K, Noma T, Komoto A, Kubo W, Takahashi M, Iida A, Miyata H 2012 Phys. Rev. Lett. 109 233907Google Scholar

    [58]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677Google Scholar

    [59]

    Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R 2019 Phys. Rev. Lett. 122 123608Google Scholar

    [60]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063Google Scholar

    [61]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602Google Scholar

    [62]

    Gu B, Cavaletto S M, Nascimento D R, Khalil M, Govind N, Mukamel S 2021 Chem. Sci. 12 8088Google Scholar

    [63]

    Gu B, Nenov A, Segatta F, Garavelli M, Mukamel S 2021 Phys. Rev. Lett. 126 053201Google Scholar

    [64]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703Google Scholar

    [65]

    Vettier C 2012 Eur. Phys. J. Spec. Top. 208 3Google Scholar

    [66]

    Fink J, Schierle E, Weschke E, Geck J 2013 Rep. Prog. Phys. 76 056502Google Scholar

    [67]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255Google Scholar

    [68]

    Van Bokhoven J A, Lamberti C 2016 X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications(Vol. 1) (John Wiley & Sons) pp125–149

    [69]

    Kotani A, Shin S 2001 Rev. Mod. Phys. 73 203Google Scholar

    [70]

    Schülke W 2007 Electron Dynamics by Inelastic X-Ray Scattering, vol. 7 (Oxford University Press) pp377–485

    [71]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [72]

    CXRO website. https://henke.lbl.gov/optical_constants/.[2024-11-12]

    [73]

    Shvyd’Ko Y 2004 X-Ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer Science & Business Media) pp 215–286

    [74]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-Ray Physics (John Wiley & Sons) pp207–238

    [75]

    Heeg K P 2014 Ph. D. Dissertation (Heidelberg: Ruperto-Carola-Universität of Heidelberg

    [76]

    Kong X 2016 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [77]

    Haber J F A 2017 Ph. D. Dissertation (Hamburg: Universität Hamburg

    [78]

    黄新朝 2020 博士学位论文 (合肥: 中国科学技术大学)

    Huang X C 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [79]

    Lentrodt D 2021 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [80]

    李天钧 2023 博士学位论文 (合肥: 中国科学技术大学)

    Li T J 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [81]

    马子茹 2023 博士学位论文 (合肥: 中国科学技术大学)

    Ma Z R 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [82]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Radiat. 27 689Google Scholar

    [83]

    Spiller E, Segmüller A 1974 Appl. Phys. Lett. 24 60Google Scholar

    [84]

    唐伟忠 1998 薄膜材料制备原理, 技术及应用 (北京: 冶金工业出版社)第1—323页

    Tang W Z 1998 Principles, Technologies, and Applications of Thin Film Material Preparation (Beijing: Metallurgical Industry Press) pp1–323

    [85]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962 [郑伟涛 2004 薄膜材料与薄膜技术 (北京: 化学工业出版社) 第1—962页]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962

    [86]

    刘小虹, 颜肖慈, 罗明道, 李伟 2002 自然杂志 24 36Google Scholar

    Liu X H, Yan X C, Luo M D, Li W 2002 Chin. J. Nat. 24 36Google Scholar

    [87]

    Phua L, Phuoc N, Ong C 2013 J. Alloys Compd. 553 146Google Scholar

    [88]

    Khyzhun O Y, Solonin Y M, Dobrovolsky V 2001 J. Alloys Compd. 320 1Google Scholar

    [89]

    Shahin A M, Grandjean F, Long G J, Schuman T P 2005 Chem. Mater. 17 315Google Scholar

    [90]

    P23 bealine of PETRA-III. https: //photon-science.desy.de/facilities/petra_iii/beamlines/p23_in_situ_x_ray_diffraction_and_imaging/beamline_layout/index_eng.html [2024-11-12]

    [91]

    Chumakov A I, Shvyd’ko Y, Sergueev I, Bessas D, Rüffer R 2019 Phys. Rev. Lett. 123 097402Google Scholar

    [92]

    Potapkin V, Chumakov A I, Smirnov G V, Celse J P, Rüffer R, McCammon C, Dubrovinsky L 2012 J. Synchrotron Radiat. 19 559Google Scholar

    [93]

    Rüffer R, Chumakov A I 1996 Hyper. Int. 97 589Google Scholar

    [94]

    Li W B, Zhu J T, Ma X Y, Li H C, Wang H C, Sawhney K J, Wang Z S 2012 Rev. Sci. Instrum. 83 053114Google Scholar

    [95]

    Hoszowska J, Dousse J C, Kern J, Rhême C 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 376 129Google Scholar

    [96]

    Kleymenov E, Bokhoven J A V, David C, Glatzel P, Janousch M, Alonso-Mori R, Studer M, Willi-mann M, Bergamaschi A, Henrich B, Nachtegaal M 2011 Rev. Sci. Instrum. 82 065107Google Scholar

    [97]

    Jagodzinski P, Szlachetko J, Dousse J C, Hoszowska J, Szlachetko M, Vogelsang U, Banaś D, Pak-endorf T, Meents A, van Bokhoven J A, Kubala-Kukuś A, Pajek M, Nachtegaal M 2019 Rev. Sci. Instrum. 90 063106Google Scholar

    [98]

    Sawhney K J S, Dolbnya I P, Tiwari M K, Alianelli L, Scott S M, Preece G M, Pedersen U K, Walton R D 2010 AIP Conf. Proc. 1234 387Google Scholar

    [99]

    Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven J A, Grunwaldt J 2010 AIP Conf. Proc. 1234 251Google Scholar

    [100]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Radiat. 22 175Google Scholar

    [101]

    Parratt L G 1954 Phys. Rev. 95 359Google Scholar

    [102]

    Röhlsberger R, Klein T, Schlage K, Leupold O, Rüffer R 2004 Phys. Rev. B 69 235412Google Scholar

    [103]

    Tomaš M S 1995 Phys. Rev. A 51 2545Google Scholar

    [104]

    Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675

    [105]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [106]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [107]

    Fano U, Cooper J W 1965 Phys. Rev. 137 A1364Google Scholar

    [108]

    Li T J, Huang X C, Ma Z R, Li B, Zhu L F 2022 Phys. Rev. Res. 4 023081Google Scholar

    [109]

    Li T J, Huang X C, Ma Z R, Li B, Wang X Y, Zhu L F 2023 Phys. Rev. A 108 033715Google Scholar

    [110]

    Dutra S M, Knight P L 1996 Phys. Rev. A 53 3587Google Scholar

    [111]

    Bauer M 2014 Phys. Chem. Chem. Phys. 16 13827Google Scholar

    [112]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003Google Scholar

    [113]

    Gel’mukhanov F, Ågren H 1999 Phys. Rep. 312 87Google Scholar

    [114]

    Lohse L M, Andrejić P, Velten S, Vassholz M, Neuhaus C, Negi A, Panchwanee A, Sergeev I, Pálffy A, Salditt T, Röhlsberger R 2024 arXiv: 2403.06508 [quant-ph]

    [115]

    Chumakov A I, Baron A Q, Sergueev I, Strohm C, Leupold O, Shvyd’ko Y, Smirnov G V, Rüffer R, Inubushi Y, Yabashi M, Tono K, Kudo T, Ishikawa T 2018 Nat. Phys. 14 261Google Scholar

    [116]

    Fukuzawa H, Son S K, Motomura K, Mondal S, Nagaya K, Wada S, Liu X J, Feifel R, Tachibana T, Ito Y, Kimura M, Sakai T, Matsunami K, Hayashita H, Kajikawa J, Johnsson P, Siano M, Kukk E, Rudek B, Erk B, Foucar L, Robert E, Miron C, Tono K, Inubushi Y, Hatsui T, Yabashi M, Yao M, Santra R, Ueda K 2013 Phys. Rev. Lett. 110 173005Google Scholar

    [117]

    LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R, Berrah N 2021 Phys. Rev. Lett. 127 213202Google Scholar

    [118]

    Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T 2018 Phys. Rev. Lett. 121 083901Google Scholar

    [119]

    Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M 2015 Nature 524 446Google Scholar

    [120]

    Wu B, Wang T, Graves C E, Zhu D, Schlotter W, Turner J, Hellwig O, Chen Z, Dürr H, Scherz A, Stöhr J 2016 Phys. Rev. Lett. 117 027401Google Scholar

    [121]

    Chen Z, Higley D J, Beye M, Hantschmann M, Mehta V, Hellwig O, Mitra A, Bonetti S, Bucher M, Carron S, Chase T, Jal E, Kukreja R, Liu T, Reid A H, Dakovski G L, Föhlisch A, Schlotter W F, Dürr H A, Stöhr J 2018 Phys. Rev. Lett. 121 137403Google Scholar

    [122]

    Liu J, Li Y, Wang L, Zhao J, Yuan J, Kong X 2021 Phys. Rev. A 104 L031101Google Scholar

    [123]

    Mercadier L, Benediktovitch A, Weninger C, Blessenohl M A, Bernitt S, Bekker H, Dobrodey S, Sanchez-Gonzalez A, Erk B, Bomme C, Boll R, Yin Z, Majety V P, Steinbrügge R, Khalal M A, Penent F, Palaudoux J, Lablanquie P, Rudenko A, Rolles D, Crespo López-Urrutia J R, Rohringer N 2019 Phys. Rev. Lett. 123 023201Google Scholar

    [124]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström J M 2022 Nature 608 488Google Scholar

    [125]

    Cui J J, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang S B 2023 Phys. Rev. Lett. 131 043201Google Scholar

    [126]

    Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J, Follath R, Kavčič M, Knopp G, Rehanek J, Błachucki W, Delcey M G, Lundberg M, Tyrała K, Zhu D, Alonso-Mori R, Abela R, Sá J, Szlachetko J 2019 Nat. Commun. 10 4761Google Scholar

    [127]

    Rohringer N 2019 Philos. Trans. R. Soc. A 377 20170471Google Scholar

    [128]

    Matsuda I, Arafune R 2023 Nonlinear X-Ray Spectroscopy for Materials Science (Springer) pp1–160

    [129]

    Shwartz S, Harris S E 2011 Phys. Rev. Lett. 106 080501Google Scholar

    [130]

    Shwartz S, Coffee R N, Feldkamp J M, Feng Y, Hastings J B, Yin G Y, Harris S E 2012 Phys. Rev. Lett. 109 013602Google Scholar

    [131]

    Shwartz S, Fuchs M, Hastings J B, Inubushi Y, Ishikawa T, Katayama T, Reis D A, Sato T, Tono K, Yabashi M, Yudovich S, Harris S E 2014 Phys. Rev. Lett. 112 163901Google Scholar

    [132]

    Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C 2015 Nature 520 205Google Scholar

    [133]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Haddad A A, Gessini A, Maznev A A, Cirelli C, Gerber S, Pedrini B, Mancini G F, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y, Mozzanica A, Johnson P J M, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, Lemke H T, Milne C J, David C, Torre R, Chergui M, Nelson K A, Masciovecchio C, Staub U, Patthey L, Svetina C 2021 Nat. Photonics 15 499Google Scholar

    [134]

    Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus J L, Li C, Bajt S C V, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra K K, Möller J, Zozulya A, Shayduk R, Lu W, Braue F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, anders M, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, Chapman H N 2023 Phys. Rev. Lett. 130 173201Google Scholar

    [135]

    Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M 2019 J. Synchrotron Radiat. 26 2050Google Scholar

    [136]

    Klein Y, Tripathi A K, Strizhevsky E, Capotondi F, De Angelis D, Giannessi L, Pancaldi M, Pedersoli E, Prince K C, Sefi O, Kim Y Y, Vartanyants I A, Shwartz S 2023 Phys. Rev. A 107 053503Google Scholar

  • [1] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [2] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211674
    [3] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] 金鑫, 杨春明, 滑文强, 李怡雯, 王劼. PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究. 物理学报, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [7] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [8] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [9] 赵玉杰, 王思胜, 单晓斌, 盛六四, 郝立庆, 王振亚, 张杰, 章礼华. 14—20 eV范围内CO的Rydberg系列. 物理学报, 2011, 60(9): 093201. doi: 10.7498/aps.60.093201
    [10] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [11] 乐孜纯, 张明, 董文, 全必胜, 刘魏, 刘恺. 制作工艺误差对X射线组合折射透镜聚焦性能影响研究. 物理学报, 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [12] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [13] 薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰. 利用X射线相衬显微研究野山参的特征结构. 物理学报, 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [14] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [15] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [16] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [17] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [18] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定. 物理学报, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [19] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究. 物理学报, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [20] 郭红霞, 陈雨生, 张义门, 韩福斌, 贺朝会, 周辉. 浮栅ROM器件x射线剂量增强效应实验研究. 物理学报, 2002, 51(10): 2315-2319. doi: 10.7498/aps.51.2315
计量
  • 文章访问数:  990
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 修回日期:  2024-10-25
  • 上网日期:  2024-11-19
  • 刊出日期:  2024-12-20

/

返回文章
返回