搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构

王海波 罗震林 刘清青 靳常青 高琛 张丽

引用本文:
Citation:

共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构

王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽

Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4

Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li
PDF
HTML
导出引用
  • 为了进一步研究Sr2CuO3.4高温超导样品中调制结构与超导电性关系, 本文对其调制结构形成机制提出了一种新的解释. 采用同步辐射共振X射线衍射技术在Cu K边附近探测调制结构随入射光能量的变化, 探测到Cu2+, Cu3+变价有序, 并用于解释Sr2CuO3.4高温超导样品中调制结构的形成机制. 实验结果表明, 氧空位既占据顶角位置又存在于CuO2面内, 氧空位的有序排布造成变价铜离子有序, 这种有序结构与其超导电性相关.
    Sr2CuO3+δ is cuprate, a high temperature superconducting (HTS) material that has a single copper oxide layer and a relatively high critical temperature. Its structure is simple and contains fewer atoms, but there are many modulation structures in it. A lot of studies have pointed out that the modulation structure is related to its superconductivity. In order to further study the relationship between modulated structure and superconductivity in Sr2CuO3.4 HTS sample, a new explanation for the formation mechanism of modulation structure is proposed in this paper. The synchrotron radiation resonant X-ray diffraction (RXD) technique is used to detect the variation of modulation structure near the absorption edge of Cu atom. Cu2+, Cu3+ valence order is detected and used to explain the formation mechanism of modulation structure in Sr2CuO3.4 high temperature superconducting sample. The energy values of incident light are selected to be 8.52, 8.95, 8.98, 9.05, 9.5, and 10.0 keV near the edge of Cu K. The energy resolution is about 1.5 eV. The detector used in the experiment is Mar165 CCD surface detector. The distance from the detector to the sample is about 315 mm. The two-dimensional diffraction pattern recorded by the CCD plane detector is processed by Fit2D software to obtain the diffraction integral intensity. In addition, the energy calibration for each of the copper foil samples is carried out prior to the start of the experiment and in the process of varying energy value.The experimental results show that the Bragg diffraction peaks corresponding to Tc = 48 K and the modulation structures of Fmmm and Pmmm are visible and calibrated. The intensity of the corresponding (2/5, 4/5, 0) diffraction peak of Fmmm is energy-dependent near the Cu K edge and first increases and then decreases abruptly near the absorption edge. This indicates that a stable ordered arrangement structure of Cu2+ and Cu3+ is formed at this time. The weak diffraction signal of this ordered arrangement structure confirms the fact that the copper-O bonding is stronger.The experiments indicate that oxygen vacancies occupy both the apical position and the CuO2 plane. The ordering arrangement of oxygen vacancies results in the ordering of copper ions with variable valence. The Cu2+, Cu3+ valence order is related to the superconductivity of Sr2CuO3.4.
      通信作者: 张丽, wanghaibo014@126.com
    • 基金项目: 国家自然科学基金(批准号: WK2310000043)和吉林省教育厅“十三五”科学技术课题(批准号: JJKH20180860KJ)资助的课题.
      Corresponding author: Zhang Li, wanghaibo014@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. WK2310000043) and the Science and Technology Program of the 13rd Five-Year Plan of Education Bureau of Jilin Province, China (Grant No. JJKH 20180860KJ).
    [1]

    Hiroi Z, Takano M, Azuma M, Takeda Y 1993 Nature 364 315Google Scholar

    [2]

    Adachi S, Tatsuki T, Sugano T, Ayako Y, Tanabe K 2000 Physica C 334 87Google Scholar

    [3]

    Shimakawa Y, Jorgensen J D, Mitchell J F, Hunter B A, Shaked H, Hinks D G, Hitterman R L, Hiroi Z, Takano M 1994 Physica C 228 73Google Scholar

    [4]

    Zhang H, Wang Y Y, Marks L D, Dravid V P, Han P D, Payne D A 1995 Physica C 255 257Google Scholar

    [5]

    Yang H, Liu Q Q, Li F Y, Jin C Q, Yu R C 2007 Supercond. Sci. Technol. 20 904Google Scholar

    [6]

    Liu Q, Yang H, Qin X, Yang L X, Li F Y, Yu Y, Yu R C, Jin C Q, Uchida S 2007 Physica C 460−462 56

    [7]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506Google Scholar

    [8]

    Liu Y, Shen X, Liu Q Q, Li X, Feng S M, Yu R C, Uchida S, Jin C Q 2014 Physica C 497 34Google Scholar

    [9]

    Nazarenko E, Lorenzo J E, Joly Y, Hodeau J L, Mannix D, Marin C 2006 Phys. Rev. Lett. 97 056403Google Scholar

    [10]

    Ohgushi K, Yamaura J I, Ohsumi H, Sugimoto K, Takeshita S, Tokuda A, Takagi H, Takata M, Arima T H 2013 Phys. Rev. Lett. 110 217212Google Scholar

    [11]

    Dmitrienko V E, Ovchinnikova E N 2000 Acta Crystallogr. 56 340Google Scholar

    [12]

    Tanaka A, Chang C F, Buchholz M F, Trabant C, Schierle E, Schlappa J, Schmitz D, Ott H, Metcalf P, Tjeng L H, Schüßler-Langeheine C 2012 Phys. Rev. Lett. 108 227203Google Scholar

    [13]

    Ovchinnikova E N, Dmitrienko V E 1999 Acta Crystallogr. 55 20Google Scholar

    [14]

    王海波 2014 博士学位论文 (合肥: 中国科学技术大学)

    Wang H B 2014 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese)

    [15]

    Hodeau J L, Favre-Nicolin V, Bos S, Renevier H, Lorenzo E, Berar J F 2001 Chem. Rev. 101 1843Google Scholar

    [16]

    Finkelstein K D, Shen Q, Shastri S 1992 Phys. Rev. Lett. 69 1612Google Scholar

    [17]

    Nakamura K, Arima T, Nakazawa A, Wakabayashi Y, Murakami Y 1999 Phys. Rev. B 60 2425

    [18]

    Goff R J, Wright J P, Attfield J P, Radaelli Paolo G 2005 J. Phys.: Condens. Matter 17 7633Google Scholar

    [19]

    Ewings R A, Boothroyd A T, Mcmorrow D F, Mannix D, Walker H C, Wanklyn B M R 2008 Phys. Rev. B 77 104415Google Scholar

    [20]

    Wang H B, Liang W, Liu Q Q, Huang H L, Yang M M, Luo Z L, Yang Y J, Hu S X, Jin C Q, Gao C 2014 J. Electron Spectrosc. Relat. Phenom. 196 61Google Scholar

  • 图 1  Sr2CuO3+δ的晶体结构

    Fig. 1.  Crystal structure of Sr2CuO3+δ.

    图 2  RXD实验测量几何示意图

    Fig. 2.  Geometric schematic diagram of RXD experimental measurement.

    图 3  Sr2CuO3+δ超导粉末样品(Tc = 48 K)在不同入射光子能量下采集的二维衍射图

    Fig. 3.  Two-dimensional diffraction patterns of Sr2CuO3+δ superconducting powder samples (Tc = 48 K) at different incident photon energies.

    图 4  入射光子能量为8.95 keV时Sr2CuO3+δ (Tc = 48 K)超导粉末样品的衍射曲线以及衍射峰标定

    Fig. 4.  Diffraction curve and calibration of diffraction peak of Sr2CuO3+δ superconducting powder samples with incident photon energy of 8.95 keV.

    图 5  Cu2+和Cu3+的原子散射因子的实部和虚部

    Fig. 5.  Real and imaginary parts of atomic scattering factors of Cu2+ and Cu3+ ions.

    图 6  (2/5, 4/5, 0)衍射峰强度的能量依赖性

    Fig. 6.  Energy dependence of (2/5, 4/5, 0) diffraction peak intensity.

  • [1]

    Hiroi Z, Takano M, Azuma M, Takeda Y 1993 Nature 364 315Google Scholar

    [2]

    Adachi S, Tatsuki T, Sugano T, Ayako Y, Tanabe K 2000 Physica C 334 87Google Scholar

    [3]

    Shimakawa Y, Jorgensen J D, Mitchell J F, Hunter B A, Shaked H, Hinks D G, Hitterman R L, Hiroi Z, Takano M 1994 Physica C 228 73Google Scholar

    [4]

    Zhang H, Wang Y Y, Marks L D, Dravid V P, Han P D, Payne D A 1995 Physica C 255 257Google Scholar

    [5]

    Yang H, Liu Q Q, Li F Y, Jin C Q, Yu R C 2007 Supercond. Sci. Technol. 20 904Google Scholar

    [6]

    Liu Q, Yang H, Qin X, Yang L X, Li F Y, Yu Y, Yu R C, Jin C Q, Uchida S 2007 Physica C 460−462 56

    [7]

    Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q, Uchida S 2006 Phys. Rev. B 74 100506Google Scholar

    [8]

    Liu Y, Shen X, Liu Q Q, Li X, Feng S M, Yu R C, Uchida S, Jin C Q 2014 Physica C 497 34Google Scholar

    [9]

    Nazarenko E, Lorenzo J E, Joly Y, Hodeau J L, Mannix D, Marin C 2006 Phys. Rev. Lett. 97 056403Google Scholar

    [10]

    Ohgushi K, Yamaura J I, Ohsumi H, Sugimoto K, Takeshita S, Tokuda A, Takagi H, Takata M, Arima T H 2013 Phys. Rev. Lett. 110 217212Google Scholar

    [11]

    Dmitrienko V E, Ovchinnikova E N 2000 Acta Crystallogr. 56 340Google Scholar

    [12]

    Tanaka A, Chang C F, Buchholz M F, Trabant C, Schierle E, Schlappa J, Schmitz D, Ott H, Metcalf P, Tjeng L H, Schüßler-Langeheine C 2012 Phys. Rev. Lett. 108 227203Google Scholar

    [13]

    Ovchinnikova E N, Dmitrienko V E 1999 Acta Crystallogr. 55 20Google Scholar

    [14]

    王海波 2014 博士学位论文 (合肥: 中国科学技术大学)

    Wang H B 2014 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese)

    [15]

    Hodeau J L, Favre-Nicolin V, Bos S, Renevier H, Lorenzo E, Berar J F 2001 Chem. Rev. 101 1843Google Scholar

    [16]

    Finkelstein K D, Shen Q, Shastri S 1992 Phys. Rev. Lett. 69 1612Google Scholar

    [17]

    Nakamura K, Arima T, Nakazawa A, Wakabayashi Y, Murakami Y 1999 Phys. Rev. B 60 2425

    [18]

    Goff R J, Wright J P, Attfield J P, Radaelli Paolo G 2005 J. Phys.: Condens. Matter 17 7633Google Scholar

    [19]

    Ewings R A, Boothroyd A T, Mcmorrow D F, Mannix D, Walker H C, Wanklyn B M R 2008 Phys. Rev. B 77 104415Google Scholar

    [20]

    Wang H B, Liang W, Liu Q Q, Huang H L, Yang M M, Luo Z L, Yang Y J, Hu S X, Jin C Q, Gao C 2014 J. Electron Spectrosc. Relat. Phenom. 196 61Google Scholar

  • [1] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用. 物理学报, 2024, 73(19): 197301. doi: 10.7498/aps.73.20241009
    [2] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [3] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211674
    [4] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究. 物理学报, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [5] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [6] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究. 物理学报, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构. 物理学报, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [10] 李玉阁, 李冠群, 李戈扬. 调制结构对c-VC/h-TiB2纳米多层膜的超硬效应的影响. 物理学报, 2013, 62(1): 016801. doi: 10.7498/aps.62.016801
    [11] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [12] 薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰. 利用X射线相衬显微研究野山参的特征结构. 物理学报, 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [13] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [14] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [15] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究. 物理学报, 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [16] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [17] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [18] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子. 物理学报, 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [20] 曹天德, 黄清龙. 二分量高温超导机理. 物理学报, 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
计量
  • 文章访问数:  8434
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-07-04
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回