-
高电荷态离子俘获靶原子、分子中的电子是一个多原子中心束缚态电子跃迁相关的基本原子物理过程,所形成的高激发态离子的退激辐射对于X射线天文建模、聚变等离子体诊断及离子束与物质作用机理研究等方面至关重要。经过不断的完善和发展,冷靶反冲离子动量谱仪(COLTRIMS)技术已经广泛应用于测量电子俘获过程中的量子态选择布居。基于复旦大学150 kV高电荷态离子碰撞实验平台及冷靶反冲离子动量谱仪,本文开展了1.4-20.0 keV/u的Ar8+炮弹离子与He原子碰撞过程中双电子俘获量子态选择截面的系统测量,并获得了3l3l’至3l7l’双激发态的相对截面。研究发现Ar8+-He双电子俘获过程中,随着碰撞能量增加,更多的量子态转移反应通道被打开,而且量子态选择布居的相对截面对炮弹离子能量呈现强烈的依赖关系。
-
关键词:
- 高电荷态离子 /
- 双电子俘获 /
- 量子态选择 /
- 冷靶反冲离子动量谱仪
Electron(s) capture in highly charged ions collision with atoms and molecules is a fundamental process related to the electron transition between bound states belongs to two atomic-centers. The X-ray emission following electron capture is important for X-ray astrophysical modeling, fusion plasma diagnosing, and ion irradiated biophysics. Over past decades, momentum-imaging cold-target recoil ion momentum spectroscopy is one of significantly developed techniques and has been widely applied to measure the quantum state-selective population in electron(s) capture processes. Based on the cold target recoil ion momentum spectroscopy mounted at the 150 kV highly charged ion platform in Fudan University, the state-selectivity of double electron capture in 1.4-20 keV/u Ar8+ on He collision was measured, and the relative cross sections of the 3l3l’to 3l7l’ double excited states were obtained. It is found that with the increase of collision energy, more quantum state-selectivity channels are open in the double electron capture (DEC) of Ar8+-He collision. It is also found that the relative cross section of the quantum state population is strongly dependent on the collision energy of the projectile ion. This present measurement not only enriches the state-selective cross-section repository and collision dynamics for highly charged ion charge exchange processes, but also provides experimental benchmarks for the available theoretical calculations.-
Keywords:
- Highly charged ions /
- double electron capture /
- quantum state-selective /
- cold target recoil ion momentum spectroscopy
-
[1] Abdallah M A, Wollf W, Wolf H E, Kamber E Y, Stöckli M, Cocke C L 1998 Phys. Rev. A 58 2911
[2] Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708
[3] Cumbee R S, Henley D B, Stancil P C, Shelton R L, Nolte J L, Wu Y, Schultz D R 2014 Astrophys. J. Lett. 787 L31
[4] Katsuda S, Tsunemi H, Mori K, Uchida H, Kosugi H, Kimura M, Nakajima H, Takakura S, Petre R, Hewitt J W, Yamaguchi H 2011 Astrophys. J. 730 24
[5] Liu J, Wang Q D, Mao S 2012 Mon. Not. R. Astron. Soc. 420 3389
[6] Hoekstra R, Anderson H, Bliek F W, Von Hellermann M, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541
[7] Cravens T E 1997 Geophys. Res. Lett. 24 105
[8] Xu J W, Xu C X, Zhang R T, Zhu X L, Feng W T, Zhao D M, Liang G Y, Guo D L, Gao Y, Zhang S F 2021 Acta Phys. Sin. 70 8(in Chinese)
[9] Meng T, Ma M, Tu B, Ma P, Zhang Y, Liu L, Xiao J, Yao K, Zou Y, Wu Y 2023 New J. Phys. 25 093026
[10] Fischer D, Gudmundsson M, Berényi Z, Haag N, Johansson H A B, Misra D, Reinhed P, Källberg A, Simonsson A, Støchkel K, Cederquist H, Schmidt H T 2010 Phys. Rev. A 81 012714
[11] Roncin P, Barat M, Laurent H 1986 Eur. phys. Lett. 2 371
[12] Hutton R, Prior M H, Chantrenne S, Chen M H, Schneider D 1989 Phys. Rev. A 39 4902
[13] Mack M, Nijland J H, Straten P v d, Niehaus A, Morgenstern R 1989 Phys. Rev. A 39 3846
[14] Posthumus J H, Morgenstern R 1990 J. Phys. B 23 2293
[15] Posthumus J H, Lukey P, Morgenstern R 1992 J. Phys. B 25 987
[16] Lee A R, Wilkins A C R, Brenton A G 1996 Int. J. Mass Spectrom. Ion Process. 152 201
[17] Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Möshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95
[18] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463
[19] Fléchard X, Harel C, Jouin H, Pons B, Adoui L, Frémont F, Cassimi A, Hennecart D 2001 J. Phys. B 34 2759
[20] Lü Y, Chen X M, Cao Z R, Wu W D 2010 Acta Phys. Sin. 59 3892 (in Chinese)
[21] Cumbee R S, Liu L, Lyons D, Schultz D R, Stancil P C, Wang J R, Ali R 2016 Mon. Not. R. Astron. Soc. 458 3554
[22] Niehaus A 1986 J. Phys. B 19 2925
[23] Olson R E, Salop A 1976 Phys. Rev. A 14 579
[24] Fritsch W, Lin C D 1984 Phys. Rev. A 29 3039
[25] Kimura M, Lane N F 1989 Adv. At. Mol. Opt. Phys. 26 79
[26] Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710
[27] Bliman S, Suraud M, Hitz D, Huber B, Lebius H, Cornille M, Rubensson J, Nordgren J, Knystautas E 1992 Phys. Rev. A 46 1321
[28] Druetta M, Martin S, Bouchama T, Harel C, Jouin H 1987 Phys. Rev. A 36 3071
[29] Boduch P, Chantepie M, Hennecart D, Husson X, Kucal H, Lecler D, Stolterfoht N, Druetta M, Fawcett B, Wilson M 1992 Phys. Scr. 45 203
[30] Cao Z R, Cai X H, Yu D Y, Yang W, Lu R C, Shao C J, Chen X M 2004 Acta Phys. Sin. 53 2943 (in Chinese)
[31] Siddiki M A K A, Zhao G, Liu L, Misra D 2024 Phys. Rev. A 109 032819
[32] Zhang R, Gao J, Zhang Y, Guo D, Gao Y, Zhu X, Xu J, Zhao D, Yan S, Xu S 2023 Phys. Rev. Res. 5 023123
[33] Zhang Y W, Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2022 Phys. Rev. A 106 042809
[34] Chen L F, Ma X W, Zhu X L 2021 Acta Phys. Sin. 70 8 (in Chinese)
[35] Raphaelian M, Berry H, Berrah N, Schneider D 1993 Phys. Rev. A 48 1292
计量
- 文章访问数: 16
- PDF下载量: 0
- 被引次数: 0