-
高电荷态离子(highly charged ions, HCI)的光谱测量不仅可以检验量子电动力学效应和相对论效应等基本物理模型, 还能够为天体物理、聚变等离子体物理甚至HCI光钟等研究提供关键原子物理数据. HCI离子能级跃迁大多在极紫外甚至X射线波段, 受限于目前的光源技术较难直接产生该波段激光, 实验室对于HCI离子的激光光谱测量十分有限. 阿秒光源具有极紫外甚至软X波段的高光子能量和超短的脉冲持续时间, 为实验室开展HCI的光谱测量与超短能级寿命研究等提供了新的机遇. 本文分析了目前国际上利用同步辐射光、自由电子激光以及飞秒高次谐波等光源已开展的一些HCI离子光谱实验测量的基本方法、研究进展等, 总结了阿秒光源、离子靶等技术的研究现状, 讨论了将极紫外阿秒光源与不同HCI离子靶的技术结合开展HCI离子阿秒时间分辨激光光谱测量的可行性, 并提出了一个HCI离子阿秒光谱测量的初步设计方案, 为未来开展HCI光谱精密测量与离子能级寿命测量等研究提供参考.The spectra of highly charged ions (HCIs) are of great significance for astronomical observation, astrophysical model establishment, and test of quantum electrodynamics (QED) theory. However, the transitions of HCI are mostly in the extreme ultraviolet or even X-ray range, the excitation spectra of HCI measured by laser spectroscopy in laboratory are very limited due to lack of the suitable light source. Up to now, only few experiments on the spectra of HCIs performed on synchrotron radiation, free electron laser or heavy-ions storage ring have been reported, which are summarized in this work. With the development of attosecond technology, several attosecond light source facilities have been built, such as extreme light infrastructure attosecond light pulse source (ELI-ALPS) and synergetic extreme condition user facility (SECUF), which have high photon energy and ultra-short pulse duration in the extreme ultraviolet and even soft X-ray range, providing new opportunities for laboratory research on HCI spectra and ultra short energy level lifetimes. Electron beam ion trap (EBIT), electron cyclotron resonance (ECR), and heavy-ion storage ring are usually used to generate ion target. But it is difficult to combine the attosecond laser source with large scale facility of HCI, for none of laboratories has both these two facilities now. Thus, two possible experimental schemes for attosecond spectrum of HCIs are proposed in this work. One scheme is that an EBIT can be designed as a terminal of attosecond laser facility, such as ELI-ALPS and SECUF, which can output different laser beams with high photon energy, ultra-short pulse duration or high flux. Another scheme is that a table-top HHG system pumped by an all-solid-state femtosecond laser or fiber femtosecond laser with high power can be combined with heavy-ion storage ring, such as ESR, CSRe, HIAF, and FAIR. Owing to high energy of ions in storage ring, the measurable energy levels of HCIs can even be extended to keV by the Doppler shift. Three different measurement methods: fluorescence detection, ion detection and attosecond absorption spectroscopy, can be used to obtain the HCI spectrum. Finally, a preliminary experimental setup for attosecond laser spectrum of HCI is proposed. The proposal on combining extreme ultraviolet attosecond light source with HCI target is discussed, and the feasibility of attosecond time-resolved precision spectrum for HCI is analyzed according to the typical parameters of attosecond light source and the known excitation cross-section and detection efficiency, which can provide a new platform for implementing ion level structure calculation, QED theory high-precision test and astronomical spectroscopic observation. It can be used to measure the ultra-short lifetime, low excitation cross-section ionic energy level, and even some transitions with large energy interval. We hope that this work can provide a reference for the experimental measuring of HCI spectrum and ion energy level lifetime in future.
[1] Beyer H F, Shevelko V P 2002 Introduction to the Physics of Highly Charged Ions (Boca Raton: CRC Press) pp1–2
[2] Epp S W, López-Urrutia J R C, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mäckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B At. Mol. Opt. Phys. 43 194008Google Scholar
[3] Mackel V, Klawitter R, Brenner G, Crespo Lopez-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar
[4] Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar
[5] Träbert E 2014 Appl. Phys. B 114 167Google Scholar
[6] Al Shorman M M, Gharaibeh M F, Bizau J M, Cubaynes D, Guilbaud S, Hassan N E, Miron C, Nicolas C, Robert E, Sakho I, Blancard C, McLaughlin B M 2013 J. Phys. B At. Mol. Opt. Phys. 46 195701Google Scholar
[7] Champeaux J P, Bizau J M, Cubaynes D, Blancard C, Nahar S, Hitz D, Bruneau J, Wuilleumier F J 2003 Astrophys. J. Suppl. Ser. 148 583Google Scholar
[8] Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 Astrophys. J. 783 124Google Scholar
[9] Indelicato P 2019 J. Phys. B At. Mol. Opt. Phys. 52 232001Google Scholar
[10] Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar
[11] Yang L S, Church D A 1993 Phys. Rev. Lett. 70 3860Google Scholar
[12] TrÌbert E 2002 Phys. Scr. T100 88Google Scholar
[13] Träbert E 2005 Phys. Scr. T120 56Google Scholar
[14] Karn R K, Mishra C N, Ahmad N, Safvan C P, Nandi T 2015 J. Atomic, Molecular, Condensate & Nano Phys. 2 127Google Scholar
[15] Saito M, Chikaoka A, Majima T, Imai M, Tsuchida H, Haruyama Y 2018 Nucl. Instrum. Meth. B 414 68Google Scholar
[16] Rothhardt J, Bilal M, Beerwerth R, Volotka A V, Hilbert V, Stöhlker T, Fritzsche S, Limpert J 2019 X-Ray Spectrom. 49 165Google Scholar
[17] Franzke B, Geissel H, Münzenberg G 2008 Mass Spectrom. Rev. 27 428Google Scholar
[18] Martinson I 1989 Rep. Prog. Phys. 52 157Google Scholar
[19] Beyer H F, Gassner T, Trassinelli M, Heß R, Spillmann U, Banaś D, Blumenhagen K H, Bosch F, Brandau C, Chen W, Dimopoulou C, Förster E, Grisenti R E, Gumberidze A, Hagmann S, Hillenbrand P M, Indelicato P, Jagodzinski P, Kämpfer T, Kozhuharov C, Lestinsky M, Liesen D, Litvinov Y A, Loetzsch R, Manil B, Märtin R, Nolden F, Petridis N, Sanjari M S, Schulze K S, Schwemlein M, Simionovici A, Steck M, Stöhlker T, Szabo C I, Trotsenko S, Uschmann I, Weber G, Wehrhan O, Winckler N, Winters D F A, Winters N, Ziegler E 2015 J. Phys. B At. Mol. Opt. Phys. 48 144010Google Scholar
[20] Patterson B M, Sell J F, Ehrenreich T, Gearba M A, Brooke G M, Scoville J, Knize R J 2015 Phys. Rev. A 91 012506Google Scholar
[21] Schippersa S, Kilcoyne A L D, Phaneufc R A, Mullerd A 2016 Contemp Phys 57 215Google Scholar
[22] Hangst J S, Berg-Sorensen K, Jessen P S, Kristensen M, Molmer K, Nielsen J S, Poulsen O, Schiffer J P, Shi P 1992 Nucl. Instrum. Meth. B 68 17Google Scholar
[23] Klaft I I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kuhl T, Marx D, Neumann R, Schroder S, Seelig P, Volker L 1994 Phys. Rev. Lett. 73 2425Google Scholar
[24] Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar
[25] Andjelkovic Z, Bharadia S, Sommer B, Vogel M, Nörtershäuser W 2010 Hyperfine Interact. 196 81Google Scholar
[26] Bundesanstalt P T https://phys.org/news/2015-03-frozen-highly-ions-highest-precision.html [2023-6-7
[27] Lyon I C, Peart B, West J B, Dolder K 1986 J. Phys. B At. Mol. Opt. Phys. 19 4137Google Scholar
[28] Covington A M, Aguilar A, Covington I R, Gharaibeh M F, Hinojosa G, Shirley C A, Phaneuf R A, Álvarez I, Cisneros C, Dominguez-Lopez I, Sant’Anna M M, Schlachter A S, McLaughlin B M, Dalgarno A 2002 Phys. Rev. A 66 062710Google Scholar
[29] Bizau J M, Champeaux J P, Cubaynes D, Wuilleumier F J, Folkmann F, Jacobsen T S, Penent F, Blancard C, Kjeldsen H 2005 Astron. Astrophys. 439 387Google Scholar
[30] Simon M C, Schwarz M, Epp S W, Beilmann C, Schmitt B L, Harman Z, Baumann T M, Mokler P H, Bernitt S, Ginzel R, Higgins S G, Keitel C H, Klawitter R, Kubiček K, Mäckel V, Ullrich J, López-Urrutia J R C 2010 J. Phys. B At. Mol. Opt. Phys. 43 065003Google Scholar
[31] Rudolph J K, Bernitt S, Epp S W, Steinbrugge R, Beilmann C, Brown G V, Eberle S, Graf A, Harman Z, Hell N, Leutenegger M, Muller A, Schlage K, Wille H C, Yavas H, Ullrich J, Crespo Lopez-Urrutia J R 2013 Phys. Rev. Lett. 111 103002Google Scholar
[32] Schippers S, Ricz S, Buhr T, Borovik A, Hellhund J, Holste K, Huber K, Schäfer H J, Schury D, Klumpp S, Mertens K, Martins M, Flesch R, Ulrich G, Rühl E, Jahnke T, Lower J, Metz D, Schmidt L P H, Schöffler M, Williams J B, Glaser L, Scholz F, Seltmann J, Viefhaus J, Dorn A, Wolf A, Ullrich J, Müller A 2014 J. Phys. B At. Mol. Opt. Phys. 47 115602Google Scholar
[33] Müller A, Bernhardt D, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J, Schippers S 2017 Astrophys. J. 836 166Google Scholar
[34] Müller A, Schippers S, Hellhund J, Kilcoyne A L D, Phaneuf R A, McLaughlin B M 2017 J. Phys. B At. Mol. Opt. Phys. 50 085007Google Scholar
[35] Schippers S, Martins M, Beerwerth R, Bari S, Holste K, Schubert K, Viefhaus J, Savin D W, Fritzsche S, Muller A 2017 Astrophys. J. 849 5Google Scholar
[36] Epp S W, Lopez-Urrutia J R, Brenner G, Mackel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhofer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar
[37] Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tünnermann A 2014 Opt. Lett. 39 4671Google Scholar
[38] Rothhardt J, Hädrich S, Demmler S, Krebs M, Winters D F A, Kühl T, Stöhlker T, Limpert J, Tünnermann A 2015 Phys. Scr. T166 014030Google Scholar
[39] Kühl T, Rothhardt J https://www.hi-jena.de/en/research_areas/photon_particle_spectroscopy/laser_generated_radiation/x_ray_laser_spectrocopy/ [2023-6-7
[40] Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar
[41] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar
[42] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar
[43] Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar
[44] Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar
[45] Kühn S, Dumergue M, Kahaly S, Mondal S, Füle M, Csizmadia T, Farkas B, Major B, Várallyay Z, Cormier E, Kalashnikov M, Calegari F, Devetta M, Frassetto F, Månsson E, Poletto L, Stagira S, Vozzi C, Nisoli M, Rudawski P, Maclot S, Campi F, Wikmark H, Arnold C L, Heyl C M, Johnsson P, L’ Huillier A, Lopez-Martens R, Haessler S, Bocoum M, Boehle F, Vernier A, Iaquaniello G, Skantzakis E, Papadakis N, Kalpouzos C, Tzallas P, Lépine F, Charalambidis D, Varjú K, Osvay K, Sansone G 2017 J. Phys. B At. Mol. Opt. Phys. 50 132002Google Scholar
[46] Meissl W, Simon M C, Crespo López-Urrutia J R, Tawara H, Ullrich J, Winter H P, Aumayr F 2006 Rev. Sci. Instrum. 77 093303Google Scholar
[47] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[48] Bouza Z, Scheers J, Ryabtsev A, Schupp R, Behnke L, Shah C, Sheil J, Bayraktar M, López-Urrutia J R C, Ubachs W, Hoekstra R, Versolato O O 2020 J. Phys. B At. Mol. Opt. Phys. 53 195001Google Scholar
[49] Grilo F, Shah C, Kühn S, Steinbrügge R, Fujii K, Marques J, Feng Gu M, Paulo Santos J, Crespo López-Urrutia J R, Amaro P 2021 Astrophys. J. 913 140Google Scholar
[50] Karlušić M, Kozubek R, Lebius H, Ban-d’Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M, Šantić B 2015 J. Phys. D Appl. Phys. 48 325304Google Scholar
[51] Schmidt M, Hass M, Zschornack G, Rappaport M L, Heber O, Prygarin A, Shachar Y, Vaintraub S 2015 AIP Conf. Proc. 1640 149Google Scholar
[52] Xiao J, Zhao R, Jin X, Tu B, Yang Y, Di L, Hutton R, Zou Y 2013 IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference Shanghai, China, May 12–17, 2013 p434
[53] 王纳秀, 陈永林, 阎和平, 蒋迪奎, 朱希恺, 郭盘林, 王福堂, 丁立人, 施锦, 李炜, 路迪, 邹亚明 2006 核技术 29 169Google Scholar
Wang N X, Chen Y L, Yan H P, Jiang D K, Zhu X K, Guo P L, Wang F T, Ding L R, Shi J, Li W, Lu D, Zou Y M 2006 Nucl. Sci. Tech. 29 169Google Scholar
[54] Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar
[55] Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar
[56] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar
Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar
[57] Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y, Gao K L 2019 Rev. Sci Instrum. 90 093301Google Scholar
[58] 赵红卫, 刘占稳, 张汶, 张雪珍, 袁平, 郭晓虹, 张子民, 王义芳 2000 原子能科学技术 34 282Google Scholar
Zhao H W, Liu Z W, Zhang W, Zhang X Z, Yuan P, Guo X H, Zhang Z M, Wang Y F 2000 At. Energy Sci. Technol. 34 282Google Scholar
[59] 夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 11Google Scholar
Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yang J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Chin. Sci. Bull. 61 11Google Scholar
[60] 张子民, 赵红卫, 张雪珍, 郭晓虹, 李锡霞, 李锦玉, 冯玉成, 王辉, 马保华, 高级元, 曹云, 孙良亭, 马雷 2003 高等物理与核物理 10 914
Zhang Z M, Zhao H W, Zhang X Z, Guo X H, Li X X, Li J Y, Feng Y C, Wang H, Ma B H, Gao J Y, Cao Y, Sun L T, Ma L 2003 Chin. Phys. C 10 914
[61] Leitner M A, Lyneis C M, Taylor C E, Abbott S R 2001 Phys. Scr. T92 171Google Scholar
[62] Zhao H W, Sun L T, Zhang X Z, Zhang Z M, Guo X H, He W, Yuan P, Song M T, Li J Y, Feng Y C, Cao Y, Li X X, Zhan W L, Wei B W, Xie D Z 2006 Rev. Sci. Instrum. 77 03A333Google Scholar
[63] Zhao H W, Sun L T, Guo J W, Lu W, Xie D Z, Hitz D, Zhang X Z, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801Google Scholar
[64] Steck M, Yuri A L 2020 Prog. Part. Nucl. Phys. 115 103811Google Scholar
[65] Tu X L, Chen X C, Zhang J T, Shuai P, Yue K, Xu X, Fu C Y, Zeng Q, Zhou X, Xing Y M, Wu J X, Mao R S, Mao L J, Fang K H, Sun Z Y, Wang M, Yang J C, Litvinov Y A, Blaum K, Zhang Y H, Yuan Y J, Ma X W, Zhou X H, Xu H S 2018 Phys. Rev. C 97 014321Google Scholar
[66] Wen W Q, Ma X, Bussmann M, Yuan Y J, Zhang D C, Winters D F A, Zhu X L, Li J, Liu H P, Zhao D M, Wang Z S, Mao R S, Zhao T C, Wu J X, Ma X M, Yan T L, Li G H, Yang X D, Liu Y, Yang J C, Xia J W, Xu H S 2014 Nucl. Instrum. Meth. A 736 75Google Scholar
[67] Wang H B, Wen W Q, Huang Z K, Zhang D C, Hai B, Bussmann M, Winters D, Zhao D M, Zhu X L, Li J, Li X N, Mao L J, Mao R S, Zhao T C, Yin D Y, Wu J X, Yang J C, Yuan Y J, Ma X 2018 Nucl. Instrum. Meth. A 908 244Google Scholar
[68] Wen W, Wang H, Huang Z, Zhang D, Chen D, Winters D, Klammes S, Kiefer D, Walther T, Litvinov S, Siebold M, Loeser M, Khan N, Zhao D, Zhu X, Li X, Li J, Zhao T, Mao R, Wu J, Yin D, Mao L, Yang J, Yuan Y, Bussmann M, Ma X 2019 Hyperfine Interact. 240 45Google Scholar
[69] Wang H, Wen W, Huang Z, Zhang D, Chen D, Zhao D, Zhu X, Winters D, Bussmann M, Ma X 2020 X-Ray Spectrom. 49 138Google Scholar
[70] Schröder S, Klein R, Boos N, Gerhard M, Grieser R, Huber G, Karafillidis A, Krieg M, Schmidt N, Kühl T, Neumann R, Balykin V, Grieser M, Habs D, Jaeschke E, Krämer D, Kristensen M, Music M, Petrich W, Schwalm D, Sigray P, Steck M, Wanner B, Wolf A 1990 Phys. Rev. Lett. 64 2901Google Scholar
[71] Reinhardt S, Saathoff G, Buhr H, Carlson L A, Wolf A, Schwalm D, Karpuk S, Novotny C, Huber G, Zimmermann M, Holzwarth R, Udem T, Hänsch T W, Gwinner G 2007 Nat. Phys. 3 861Google Scholar
[72] Saathoff G, Karpuk S, Eisenbarth U, Huber G, Krohn S, Horta R M, Reinhardt S, Schwalm D, Wolf A, Gwinner G 2003 Phys. Rev. Lett. 91 190403Google Scholar
[73] Schramm U, Bussmann M, Habs D, Steck M, Kühl T, Beckerts K, Beller P, Franzke B, Nolden F, Saathoff G, Reinhardt S, Karpuk S 2006 Hyperfine Interact. 162 181Google Scholar
[74] Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar
[75] Stöhlker T, Litvinov Y A, Bräuning-Demian A, Lestinsky M, Herfurth F, Maier R, Prasuhn D, Schuch R, Steck M, for the S C 2014 Hyperfine Interact. 227 45Google Scholar
[76] Henning W F 2008 Nucl. Phys. A 805 502CGoogle Scholar
[77] Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263Google Scholar
[78] 杨建成, 曾钢, 肖国青, 彭良强, 夏佳文, 赵红卫, 徐瑚珊, 周小红, 原有进, 马力祯, 高大庆, 许哲, 孙良亭, 冒立军, 何源, 张军辉, 胡正国, 马新文, 苏有武, 张玮, 毛瑞士, 蒙峻, 姚庆高, 盛丽娜, 申国栋, 王思成 2020 科学通报 65 8Google Scholar
Yang J C, Zeng G, Xiao G Q, Peng L Q, Xia J W, Zhao H W, Xu H S, Zhou X H, Yuan Y J, Ma L Z, Gao D Q, Xu Z, Sun L T, Mao L J, He Y, Zhang J H, Hu Z G, Ma X W, Su Y W, Zhang W, Mao R S, Sheng L N, Shen G D, Wang S C 2020 Chin. Sci. Bull. 65 8Google Scholar
[79] 赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 77Google Scholar
Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci. China Phys. Mech. Astron. 50 77Google Scholar
[80] Steinbrügge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Müller A, Versolato O O, Wille H C, Yavaş H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502Google Scholar
[81] 陈冬阳, 汪寒冰, 黄忠魁, 赵冬梅, 刘鑫, 周晓鹏, 刘建龙, 李长春, 杨金晶, 张大成, 汶伟强, 马新文 2022 原子核物理评论 39 224Google Scholar
Chen D Y, Wang H B, Huang Z K, Zhao D M, Liu X, Zhou X P, Liu J L, Li C C, Yang J J, Zhang D C, Wen W Q, Ma X W 2022 Nucl. Phys. Rev. 39 224Google Scholar
[82] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar
[83] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar
[84] Wang X W, Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323Google Scholar
-
表 1 ALS (SECUF)与HHG, seeded FEL和SASE FEL 等XUV光源的主要参数比较
Table 1. Comparison of ALS (SECUF) and other XUV light sources based on HHG, seeded FEL, and SASE FEL.
光源 产生方式 脉宽 光子通量/(光子·s–1) 调谐范围/eV 重复频率 ELI-ALPS HHG < 100 as 1.25×1012 10—120 1—100 kHz ALS (SECUF) Beamline 1 HHG < 100 as ~109—1010 30—100 1—3 kHz ALS (SECUF) Beamline 2 HHG < 200 fs 1011 20—80 1 MHz ALS (SECUF) Beamline 3 HHG < 200 as 1010 50—100 10 kHz ALS (SECUF) Beamline 4 HHG < 200 as 1011 60—96 100 kHz Artemis (RAL) HHG 10—50 fs (APT) 1.8×10@30 eV 10—100 1 kHz LCLS (SLAC) SASE FEL 10—1000 fs 1014 500—800 120 Hz Dreamline (SSRF) SASE FEL — 3.5×1011@800 eV 20—2000 2 Hz FLASH (DESY) SASE FEL 50–200 fs 1012—1014 24—310 10 Hz FERMI (Elettra ST) seeded FEL 150 fs 3.7×1013 15.5—62.0 10 Hz DCLS (Dalian) seeded FEL 30/130/1000 fs > 2.5×1013 8.3—25 — -
[1] Beyer H F, Shevelko V P 2002 Introduction to the Physics of Highly Charged Ions (Boca Raton: CRC Press) pp1–2
[2] Epp S W, López-Urrutia J R C, Simon M C, Baumann T, Brenner G, Ginzel R, Guerassimova N, Mäckel V, Mokler P H, Schmitt B L, Tawara H, Ullrich J 2010 J. Phys. B At. Mol. Opt. Phys. 43 194008Google Scholar
[3] Mackel V, Klawitter R, Brenner G, Crespo Lopez-Urrutia J R, Ullrich J 2011 Phys. Rev. Lett. 107 143002Google Scholar
[4] Huang Z K, Wen W Q, Xu X, Mahmood S, Wang S X, Wang H B, Dou L J, Khan N, Badnell N R, Preval S P, Schippers S, Xu T H, Yang Y, Yao K, Xu W Q, Chuai X Y, Zhu X L, Zhao D M, Mao L J, Ma X M, Li J, Mao R S, Yuan Y J, Wu B, Sheng L N, Yang J C, Xu H S, Zhu L F, Ma X 2018 Astrophys. J. Suppl. Ser. 235 2Google Scholar
[5] Träbert E 2014 Appl. Phys. B 114 167Google Scholar
[6] Al Shorman M M, Gharaibeh M F, Bizau J M, Cubaynes D, Guilbaud S, Hassan N E, Miron C, Nicolas C, Robert E, Sakho I, Blancard C, McLaughlin B M 2013 J. Phys. B At. Mol. Opt. Phys. 46 195701Google Scholar
[7] Champeaux J P, Bizau J M, Cubaynes D, Blancard C, Nahar S, Hitz D, Bruneau J, Wuilleumier F J 2003 Astrophys. J. Suppl. Ser. 148 583Google Scholar
[8] Liang G Y, Li F, Wang F L, Wu Y, Zhong J Y, Zhao G 2014 Astrophys. J. 783 124Google Scholar
[9] Indelicato P 2019 J. Phys. B At. Mol. Opt. Phys. 52 232001Google Scholar
[10] Nörtershäuser W 2011 Hyperfine Interact. 199 131Google Scholar
[11] Yang L S, Church D A 1993 Phys. Rev. Lett. 70 3860Google Scholar
[12] TrÌbert E 2002 Phys. Scr. T100 88Google Scholar
[13] Träbert E 2005 Phys. Scr. T120 56Google Scholar
[14] Karn R K, Mishra C N, Ahmad N, Safvan C P, Nandi T 2015 J. Atomic, Molecular, Condensate & Nano Phys. 2 127Google Scholar
[15] Saito M, Chikaoka A, Majima T, Imai M, Tsuchida H, Haruyama Y 2018 Nucl. Instrum. Meth. B 414 68Google Scholar
[16] Rothhardt J, Bilal M, Beerwerth R, Volotka A V, Hilbert V, Stöhlker T, Fritzsche S, Limpert J 2019 X-Ray Spectrom. 49 165Google Scholar
[17] Franzke B, Geissel H, Münzenberg G 2008 Mass Spectrom. Rev. 27 428Google Scholar
[18] Martinson I 1989 Rep. Prog. Phys. 52 157Google Scholar
[19] Beyer H F, Gassner T, Trassinelli M, Heß R, Spillmann U, Banaś D, Blumenhagen K H, Bosch F, Brandau C, Chen W, Dimopoulou C, Förster E, Grisenti R E, Gumberidze A, Hagmann S, Hillenbrand P M, Indelicato P, Jagodzinski P, Kämpfer T, Kozhuharov C, Lestinsky M, Liesen D, Litvinov Y A, Loetzsch R, Manil B, Märtin R, Nolden F, Petridis N, Sanjari M S, Schulze K S, Schwemlein M, Simionovici A, Steck M, Stöhlker T, Szabo C I, Trotsenko S, Uschmann I, Weber G, Wehrhan O, Winckler N, Winters D F A, Winters N, Ziegler E 2015 J. Phys. B At. Mol. Opt. Phys. 48 144010Google Scholar
[20] Patterson B M, Sell J F, Ehrenreich T, Gearba M A, Brooke G M, Scoville J, Knize R J 2015 Phys. Rev. A 91 012506Google Scholar
[21] Schippersa S, Kilcoyne A L D, Phaneufc R A, Mullerd A 2016 Contemp Phys 57 215Google Scholar
[22] Hangst J S, Berg-Sorensen K, Jessen P S, Kristensen M, Molmer K, Nielsen J S, Poulsen O, Schiffer J P, Shi P 1992 Nucl. Instrum. Meth. B 68 17Google Scholar
[23] Klaft I I, Borneis S, Engel T, Fricke B, Grieser R, Huber G, Kuhl T, Marx D, Neumann R, Schroder S, Seelig P, Volker L 1994 Phys. Rev. Lett. 73 2425Google Scholar
[24] Ullmann J, Andelkovic Z, Brandau C, Dax A, Geithner W, Geppert C, Gorges C, Hammen M, Hannen V, Kaufmann S, König K, Litvinov Y A, Lochmann M, Maaß B, Meisner J, Murböck T, Sánchez R, Schmidt M, Schmidt S, Steck M, Stöhlker T, Thompson R C, Trageser C, Vollbrecht J, Weinheimer C, Nörtershäuser W 2017 Nat. Commun. 8 15484Google Scholar
[25] Andjelkovic Z, Bharadia S, Sommer B, Vogel M, Nörtershäuser W 2010 Hyperfine Interact. 196 81Google Scholar
[26] Bundesanstalt P T https://phys.org/news/2015-03-frozen-highly-ions-highest-precision.html [2023-6-7
[27] Lyon I C, Peart B, West J B, Dolder K 1986 J. Phys. B At. Mol. Opt. Phys. 19 4137Google Scholar
[28] Covington A M, Aguilar A, Covington I R, Gharaibeh M F, Hinojosa G, Shirley C A, Phaneuf R A, Álvarez I, Cisneros C, Dominguez-Lopez I, Sant’Anna M M, Schlachter A S, McLaughlin B M, Dalgarno A 2002 Phys. Rev. A 66 062710Google Scholar
[29] Bizau J M, Champeaux J P, Cubaynes D, Wuilleumier F J, Folkmann F, Jacobsen T S, Penent F, Blancard C, Kjeldsen H 2005 Astron. Astrophys. 439 387Google Scholar
[30] Simon M C, Schwarz M, Epp S W, Beilmann C, Schmitt B L, Harman Z, Baumann T M, Mokler P H, Bernitt S, Ginzel R, Higgins S G, Keitel C H, Klawitter R, Kubiček K, Mäckel V, Ullrich J, López-Urrutia J R C 2010 J. Phys. B At. Mol. Opt. Phys. 43 065003Google Scholar
[31] Rudolph J K, Bernitt S, Epp S W, Steinbrugge R, Beilmann C, Brown G V, Eberle S, Graf A, Harman Z, Hell N, Leutenegger M, Muller A, Schlage K, Wille H C, Yavas H, Ullrich J, Crespo Lopez-Urrutia J R 2013 Phys. Rev. Lett. 111 103002Google Scholar
[32] Schippers S, Ricz S, Buhr T, Borovik A, Hellhund J, Holste K, Huber K, Schäfer H J, Schury D, Klumpp S, Mertens K, Martins M, Flesch R, Ulrich G, Rühl E, Jahnke T, Lower J, Metz D, Schmidt L P H, Schöffler M, Williams J B, Glaser L, Scholz F, Seltmann J, Viefhaus J, Dorn A, Wolf A, Ullrich J, Müller A 2014 J. Phys. B At. Mol. Opt. Phys. 47 115602Google Scholar
[33] Müller A, Bernhardt D, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Seltmann J, Viefhaus J, Schippers S 2017 Astrophys. J. 836 166Google Scholar
[34] Müller A, Schippers S, Hellhund J, Kilcoyne A L D, Phaneuf R A, McLaughlin B M 2017 J. Phys. B At. Mol. Opt. Phys. 50 085007Google Scholar
[35] Schippers S, Martins M, Beerwerth R, Bari S, Holste K, Schubert K, Viefhaus J, Savin D W, Fritzsche S, Muller A 2017 Astrophys. J. 849 5Google Scholar
[36] Epp S W, Lopez-Urrutia J R, Brenner G, Mackel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhofer M, Martins M, Wurth W, Ullrich J 2007 Phys. Rev. Lett. 98 183001Google Scholar
[37] Stutzki F, Gaida C, Gebhardt M, Jansen F, Wienke A, Zeitner U, Fuchs F, Jauregui C, Wandt D, Kracht D, Limpert J, Tünnermann A 2014 Opt. Lett. 39 4671Google Scholar
[38] Rothhardt J, Hädrich S, Demmler S, Krebs M, Winters D F A, Kühl T, Stöhlker T, Limpert J, Tünnermann A 2015 Phys. Scr. T166 014030Google Scholar
[39] Kühl T, Rothhardt J https://www.hi-jena.de/en/research_areas/photon_particle_spectroscopy/laser_generated_radiation/x_ray_laser_spectrocopy/ [2023-6-7
[40] Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar
[41] Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar
[42] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506Google Scholar
[43] Teng H, He X K, Zhao K, Wei Z Y 2018 Chin. Phys. B 27 074203Google Scholar
[44] Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, Rothhardt J, Limpert J 2021 PhotoniX 2 4Google Scholar
[45] Kühn S, Dumergue M, Kahaly S, Mondal S, Füle M, Csizmadia T, Farkas B, Major B, Várallyay Z, Cormier E, Kalashnikov M, Calegari F, Devetta M, Frassetto F, Månsson E, Poletto L, Stagira S, Vozzi C, Nisoli M, Rudawski P, Maclot S, Campi F, Wikmark H, Arnold C L, Heyl C M, Johnsson P, L’ Huillier A, Lopez-Martens R, Haessler S, Bocoum M, Boehle F, Vernier A, Iaquaniello G, Skantzakis E, Papadakis N, Kalpouzos C, Tzallas P, Lépine F, Charalambidis D, Varjú K, Osvay K, Sansone G 2017 J. Phys. B At. Mol. Opt. Phys. 50 132002Google Scholar
[46] Meissl W, Simon M C, Crespo López-Urrutia J R, Tawara H, Ullrich J, Winter H P, Aumayr F 2006 Rev. Sci. Instrum. 77 093303Google Scholar
[47] Kozlov M G, Safronova M S, Crespo López-Urrutia J R, Schmidt P O 2018 Rev. Mod. Phys. 90 045005Google Scholar
[48] Bouza Z, Scheers J, Ryabtsev A, Schupp R, Behnke L, Shah C, Sheil J, Bayraktar M, López-Urrutia J R C, Ubachs W, Hoekstra R, Versolato O O 2020 J. Phys. B At. Mol. Opt. Phys. 53 195001Google Scholar
[49] Grilo F, Shah C, Kühn S, Steinbrügge R, Fujii K, Marques J, Feng Gu M, Paulo Santos J, Crespo López-Urrutia J R, Amaro P 2021 Astrophys. J. 913 140Google Scholar
[50] Karlušić M, Kozubek R, Lebius H, Ban-d’Etat B, Wilhelm R A, Buljan M, Siketić Z, Scholz F, Meisch T, Jakšić M, Bernstorff S, Schleberger M, Šantić B 2015 J. Phys. D Appl. Phys. 48 325304Google Scholar
[51] Schmidt M, Hass M, Zschornack G, Rappaport M L, Heber O, Prygarin A, Shachar Y, Vaintraub S 2015 AIP Conf. Proc. 1640 149Google Scholar
[52] Xiao J, Zhao R, Jin X, Tu B, Yang Y, Di L, Hutton R, Zou Y 2013 IPAC 2013: Proceedings of the 4th International Particle Accelerator Conference Shanghai, China, May 12–17, 2013 p434
[53] 王纳秀, 陈永林, 阎和平, 蒋迪奎, 朱希恺, 郭盘林, 王福堂, 丁立人, 施锦, 李炜, 路迪, 邹亚明 2006 核技术 29 169Google Scholar
Wang N X, Chen Y L, Yan H P, Jiang D K, Zhu X K, Guo P L, Wang F T, Ding L R, Shi J, Li W, Lu D, Zou Y M 2006 Nucl. Sci. Tech. 29 169Google Scholar
[54] Lu Q, Yan C L, Xu G Q, Fu N, Yang Y, Zou Y, Volotka A V, Xiao J, Nakamura N, Hutton R 2020 Phys. Rev. A 102 042817Google Scholar
[55] Liang S Y, Zhang T X, Guan H, Lu Q F, Xiao J, Chen S L, Huang Y, Zhang Y H, Li C B, Zou Y M, Li J G, Yan Z C, Derevianko A, Zhan M S, Shi T Y, Gao K L 2021 Phys. Rev. A 103 022804Google Scholar
[56] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文 2022 物理学报 71 033201Google Scholar
Liu X, Zhou X P, Wen W Q, Lu Q F, Yan C L, Xu G Q, Xiao J, Huang Z K, Wang H B, Chen D Y, Shao L, Yuan Y, Wang S X, Ma W L, Ma X W 2022 Acta Phys. Sin. 71 033201Google Scholar
[57] Liang S Y, Lu Q F, Wang X C, Yang Y, Yao K, Shen Y, Wei B, Xiao J, Chen S L, Zhou P P, Sun W, Zhang Y H, Huang Y, Guan H, Tong X, Li C B, Zou Y M, Shi T Y, Gao K L 2019 Rev. Sci Instrum. 90 093301Google Scholar
[58] 赵红卫, 刘占稳, 张汶, 张雪珍, 袁平, 郭晓虹, 张子民, 王义芳 2000 原子能科学技术 34 282Google Scholar
Zhao H W, Liu Z W, Zhang W, Zhang X Z, Yuan P, Guo X H, Zhang Z M, Wang Y F 2000 At. Energy Sci. Technol. 34 282Google Scholar
[59] 夏佳文, 詹文龙, 魏宝文, 原有进, 赵红卫, 杨建成, 石健, 盛丽娜, 杨维青, 冒立军 2016 科学通报 61 11Google Scholar
Xia J W, Zhan W L, Wei B W, Yuan Y J, Zhao H W, Yang J C, Shi J, Sheng L N, Yang W Q, Mao L J 2016 Chin. Sci. Bull. 61 11Google Scholar
[60] 张子民, 赵红卫, 张雪珍, 郭晓虹, 李锡霞, 李锦玉, 冯玉成, 王辉, 马保华, 高级元, 曹云, 孙良亭, 马雷 2003 高等物理与核物理 10 914
Zhang Z M, Zhao H W, Zhang X Z, Guo X H, Li X X, Li J Y, Feng Y C, Wang H, Ma B H, Gao J Y, Cao Y, Sun L T, Ma L 2003 Chin. Phys. C 10 914
[61] Leitner M A, Lyneis C M, Taylor C E, Abbott S R 2001 Phys. Scr. T92 171Google Scholar
[62] Zhao H W, Sun L T, Zhang X Z, Zhang Z M, Guo X H, He W, Yuan P, Song M T, Li J Y, Feng Y C, Cao Y, Li X X, Zhan W L, Wei B W, Xie D Z 2006 Rev. Sci. Instrum. 77 03A333Google Scholar
[63] Zhao H W, Sun L T, Guo J W, Lu W, Xie D Z, Hitz D, Zhang X Z, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801Google Scholar
[64] Steck M, Yuri A L 2020 Prog. Part. Nucl. Phys. 115 103811Google Scholar
[65] Tu X L, Chen X C, Zhang J T, Shuai P, Yue K, Xu X, Fu C Y, Zeng Q, Zhou X, Xing Y M, Wu J X, Mao R S, Mao L J, Fang K H, Sun Z Y, Wang M, Yang J C, Litvinov Y A, Blaum K, Zhang Y H, Yuan Y J, Ma X W, Zhou X H, Xu H S 2018 Phys. Rev. C 97 014321Google Scholar
[66] Wen W Q, Ma X, Bussmann M, Yuan Y J, Zhang D C, Winters D F A, Zhu X L, Li J, Liu H P, Zhao D M, Wang Z S, Mao R S, Zhao T C, Wu J X, Ma X M, Yan T L, Li G H, Yang X D, Liu Y, Yang J C, Xia J W, Xu H S 2014 Nucl. Instrum. Meth. A 736 75Google Scholar
[67] Wang H B, Wen W Q, Huang Z K, Zhang D C, Hai B, Bussmann M, Winters D, Zhao D M, Zhu X L, Li J, Li X N, Mao L J, Mao R S, Zhao T C, Yin D Y, Wu J X, Yang J C, Yuan Y J, Ma X 2018 Nucl. Instrum. Meth. A 908 244Google Scholar
[68] Wen W, Wang H, Huang Z, Zhang D, Chen D, Winters D, Klammes S, Kiefer D, Walther T, Litvinov S, Siebold M, Loeser M, Khan N, Zhao D, Zhu X, Li X, Li J, Zhao T, Mao R, Wu J, Yin D, Mao L, Yang J, Yuan Y, Bussmann M, Ma X 2019 Hyperfine Interact. 240 45Google Scholar
[69] Wang H, Wen W, Huang Z, Zhang D, Chen D, Zhao D, Zhu X, Winters D, Bussmann M, Ma X 2020 X-Ray Spectrom. 49 138Google Scholar
[70] Schröder S, Klein R, Boos N, Gerhard M, Grieser R, Huber G, Karafillidis A, Krieg M, Schmidt N, Kühl T, Neumann R, Balykin V, Grieser M, Habs D, Jaeschke E, Krämer D, Kristensen M, Music M, Petrich W, Schwalm D, Sigray P, Steck M, Wanner B, Wolf A 1990 Phys. Rev. Lett. 64 2901Google Scholar
[71] Reinhardt S, Saathoff G, Buhr H, Carlson L A, Wolf A, Schwalm D, Karpuk S, Novotny C, Huber G, Zimmermann M, Holzwarth R, Udem T, Hänsch T W, Gwinner G 2007 Nat. Phys. 3 861Google Scholar
[72] Saathoff G, Karpuk S, Eisenbarth U, Huber G, Krohn S, Horta R M, Reinhardt S, Schwalm D, Wolf A, Gwinner G 2003 Phys. Rev. Lett. 91 190403Google Scholar
[73] Schramm U, Bussmann M, Habs D, Steck M, Kühl T, Beckerts K, Beller P, Franzke B, Nolden F, Saathoff G, Reinhardt S, Karpuk S 2006 Hyperfine Interact. 162 181Google Scholar
[74] Seelig P, Borneis S, Dax A, Engel T, Faber S, Gerlach M, Holbrow C, Huber G, Kühl T, Marx D, Meier K, Merz P, Quint W, Schmitt F, Tomaselli M, Völker L, Winter H, Würtz M, Beckert K, Franzke B, Nolden F, Reich H, Steck M, Winkler T 1998 Phys. Rev. Lett. 81 4824Google Scholar
[75] Stöhlker T, Litvinov Y A, Bräuning-Demian A, Lestinsky M, Herfurth F, Maier R, Prasuhn D, Schuch R, Steck M, for the S C 2014 Hyperfine Interact. 227 45Google Scholar
[76] Henning W F 2008 Nucl. Phys. A 805 502CGoogle Scholar
[77] Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Meth. B 317 263Google Scholar
[78] 杨建成, 曾钢, 肖国青, 彭良强, 夏佳文, 赵红卫, 徐瑚珊, 周小红, 原有进, 马力祯, 高大庆, 许哲, 孙良亭, 冒立军, 何源, 张军辉, 胡正国, 马新文, 苏有武, 张玮, 毛瑞士, 蒙峻, 姚庆高, 盛丽娜, 申国栋, 王思成 2020 科学通报 65 8Google Scholar
Yang J C, Zeng G, Xiao G Q, Peng L Q, Xia J W, Zhao H W, Xu H S, Zhou X H, Yuan Y J, Ma L Z, Gao D Q, Xu Z, Sun L T, Mao L J, He Y, Zhang J H, Hu Z G, Ma X W, Su Y W, Zhang W, Mao R S, Sheng L N, Shen G D, Wang S C 2020 Chin. Sci. Bull. 65 8Google Scholar
[79] 赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学 力学 天文学 50 77Google Scholar
Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci. China Phys. Mech. Astron. 50 77Google Scholar
[80] Steinbrügge R, Bernitt S, Epp S W, Rudolph J K, Beilmann C, Bekker H, Eberle S, Müller A, Versolato O O, Wille H C, Yavaş H, Ullrich J, Crespo López-Urrutia J R 2015 Phys. Rev. A 91 032502Google Scholar
[81] 陈冬阳, 汪寒冰, 黄忠魁, 赵冬梅, 刘鑫, 周晓鹏, 刘建龙, 李长春, 杨金晶, 张大成, 汶伟强, 马新文 2022 原子核物理评论 39 224Google Scholar
Chen D Y, Wang H B, Huang Z K, Zhao D M, Liu X, Zhou X P, Liu J L, Li C C, Yang J J, Zhang D C, Wen W Q, Ma X W 2022 Nucl. Phys. Rev. 39 224Google Scholar
[82] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar
[83] Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar
[84] Wang X W, Chini M, Cheng Y, Wu Y, Chang Z H 2013 Appl. Opt. 52 323Google Scholar
计量
- 文章访问数: 5664
- PDF下载量: 231
- 被引次数: 0