搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯类超导体的单磁性杂质效应

赵宗阳 李铭 周涛

引用本文:
Citation:

石墨烯类超导体的单磁性杂质效应

赵宗阳, 李铭, 周涛

Single magnetic impurity effects in graphene based superconductors

Zhao Zong-Yang, Li Ming, Zhou Tao
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超导体的磁性杂质效应以及其中存在的束缚态(即Yu-Shiba-Rusinov 态)一直受到较多的关注. 最近, 在实验室中, 成功发现了石墨烯类超导材料中Yu-Shiba-Rusinov 态的存在. 本文在实空间建立描述石墨烯材料超导态的有效哈密顿量, 考虑单个磁性杂质, 构造Bogoliubov-de Gennes (BdG)方程, 并对超导序参量做自洽计算, 在此基础上, 理论研究了石墨烯类超导体的磁性杂质效应. 计算结果显示, 仅当超导的配对对称性是传统的s波配对时, 能隙内会出现Yu-Shiba-Rusinov 束缚态, 束缚态的位置以及强度和杂质的磁矩有关, 且强度显示出了明显的正负非对称性, 但对于p+ip和d+id配对对称性, 则不存在能隙内的束缚态. 本文的理论计算结果一方面对实验现象做了合理解释, 另一方面指出了石墨烯和传统超导组成的异质结系统, 石墨烯层由于临近效应诱导出来的超导配对项仍然是s波配对.
    The magnetic impurity effects and the existence of bound states (i.e. Yu-Shiba-Rusinov states) in superconductors have been a topic of great interest. Recently, the existence of Yu-Shiba-Rusinov states in graphene-based superconducting materials has been successfully observed in the laboratory. In this work, an effective Hamiltonian in real space is established to describe the superconducting state of graphene materials by considering a single magnetic impurity. Thus the Bogoliubov-de Gennes (BdG) equation is constructed and the self-consistency calculations of the superconducting order parameter are conducted. On this basis, the effects of magnetic impurities on graphene-like superconductors are investigated theoretically. The numerical results show that the Yu-Shiba-Rusinov state can only appear in the symmetry of the superconducting pair of the traditional s-wave coupling. The position and strength of the bound state are related to the magnetic moment of the impurity, showing a notable electron-hole asymmetry. There are no bound states in the energy gap for other pairing symmetries. This theoretical calculation not only provides a reasonable explanation for experimental phenomena, but also demonstrates that the heterojunction system composed of graphene and traditional superconductors has an s-wave superconducting pairing induced by the proximity effect in the graphene layer.
      通信作者: 李铭, wliming@scnu.edu.cn ; 周涛, tzhou@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074130)和广东省自然科学基金(批准号: 2021A1515012340)资助的课题.
      Corresponding author: Li Ming, wliming@scnu.edu.cn ; Zhou Tao, tzhou@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074130) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515012340).
    [1]

    Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B, Chapelier C 2013 Phys. Rev. Lett. 111 246805Google Scholar

    [2]

    Ichinokura S, Sugawara K, Takayama A, Takahashi T, Hasegawa S 2016 Acs Nano 10 2761Google Scholar

    [3]

    Ichinokura S, Sugawara K, Takayama A, Takahashi T, Hasegawa S 2016 Sci. Rep. 6 23254Google Scholar

    [4]

    Zhou H X, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [5]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [7]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [8]

    Lee G H, Lee H J 2018 Rep. Prog. Phys. 81 056502Google Scholar

    [9]

    Bernardo A D, Millo O, Barbone M, et al. 2017 Nat. Commun. 8 14024Google Scholar

    [10]

    Ma T, Yang F, Yao H, Lin H Q 2014 Phys. Rev. B 90 245114Google Scholar

    [11]

    Faye J P L, Sahebsara P, Senechal D 2015 Phys. Rev. B 92 085121Google Scholar

    [12]

    Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158Google Scholar

    [13]

    Kiesel M L, Platt C, Hanke W, Abanin D A, Thomale R 2012 Phys. Rev. B 86 020507(RGoogle Scholar

    [14]

    Nandkishore R, Thomale R, Chubukov A V 2014 Phys. Rev. B 89 144501Google Scholar

    [15]

    Xiao L Y, Yu S L, Wang W, Yao Z J, Li J X 2016 Europhys. Lett. 115 27008Google Scholar

    [16]

    Balatsky A V, Vekhter I, Zhu J X 2006 Rev. Mod. Phys. 78 373Google Scholar

    [17]

    Li Y Q, Zhou T 2021 Front. Phys. 16 43502Google Scholar

    [18]

    Awoga O A, Black-Schaffer A M 2018 Phys. Rev. B 97 214515Google Scholar

    [19]

    Wehling T O, Dahal H P, Lichtenstein A I, Balatsky A V 2008 Phys. Rev. B 78 035414Google Scholar

    [20]

    于渌 1965 物理学报 21 75Google Scholar

    Yu L 1965 Acta Phys. Sin. 21 75Google Scholar

    [21]

    Shiba H 1968 Progress of theoretical Physics 40 435Google Scholar

    [22]

    Rusinov A I 1969 Sov. Phys. JETP 29 1101

    [23]

    Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar

    [24]

    Lado J L, Fernandez-Rossier J 2016 2D Mater. 3 025001Google Scholar

    [25]

    Río E C, Lado J L, Cherkez V, et al. 2021 Adv. Mater. 33 2008113Google Scholar

    [26]

    Cervenka J, Katsnelson M I, Flipse C F J 2009 Nat. Phys. 5 840Google Scholar

    [27]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [28]

    Dutta S, Wakabayashi K 2015 Sci. Rep. 5 11744Google Scholar

    [29]

    Zuo X J, An J, Gong C D 2008 Phys. Rev.B 77 144512Google Scholar

    [30]

    Zuo X J, An J, Gong C D 2008 Phys. Rev.B 77 212508Google Scholar

  • 图 1  根据(7)式自洽计算得到的s波超导序参量的空间分布

    Fig. 1.  Spatial distribution of the superconducing order parameter based on the self-consistent calculation [Eq.(7)].

    图 2  (a) 平均粒子数$ n_i $的空间分布; (b) 局域磁矩$ m_i $的空间分布

    Fig. 2.  (a) Spatial distribution of the on-site particle number $ n_i $; (b) spatial distribution of the local magnetic moment $ m_i $.

    图 3  s波配对情况下磁性杂质附近的局域电子态密度的计算结果 (a) 杂质点位置的局域电子态密度; (b) 杂质最近邻格点上的局域电子态密度

    Fig. 3.  Numerical results of the local density of states near the magnetic impurity site for the s-wave graphene based superconductor: (a) The local density of states at the impurity site; (b) the local density of states at the nearest neighbor site of the impurity.

    图 4  d+id波和p+ip波配对情况下磁性杂质附近的局域电子态密度的计算结果 (a) d+id配对杂质点位置的局域电子态密度; (b) d+id 配对杂质最近邻格点上的局域电子态密度; (c) p+ip配对杂质点位置的局域电子态密度; (d) p+ip配对杂质最近邻格点上的局域电子态密度

    Fig. 4.  Numerical results of the local density of states near the magnetic impurity site for the d+id-wave and p+ip-wave graphene based superconductor: (a) The local density of states at the impurity site for the d+id pairing symmetry; (b) the local density of states at the nearest neighbor site of the impurity for the d+id pairing symmetry; (c) the local density of states at the impurity site for the p+ip pairing symmetry; (d) the local density of states at the nearest neighbor site of the impurity for the p+ip pairing symmetry.

  • [1]

    Tonnoir C, Kimouche A, Coraux J, Magaud L, Delsol B, Gilles B, Chapelier C 2013 Phys. Rev. Lett. 111 246805Google Scholar

    [2]

    Ichinokura S, Sugawara K, Takayama A, Takahashi T, Hasegawa S 2016 Acs Nano 10 2761Google Scholar

    [3]

    Ichinokura S, Sugawara K, Takayama A, Takahashi T, Hasegawa S 2016 Sci. Rep. 6 23254Google Scholar

    [4]

    Zhou H X, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [5]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [6]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [7]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [8]

    Lee G H, Lee H J 2018 Rep. Prog. Phys. 81 056502Google Scholar

    [9]

    Bernardo A D, Millo O, Barbone M, et al. 2017 Nat. Commun. 8 14024Google Scholar

    [10]

    Ma T, Yang F, Yao H, Lin H Q 2014 Phys. Rev. B 90 245114Google Scholar

    [11]

    Faye J P L, Sahebsara P, Senechal D 2015 Phys. Rev. B 92 085121Google Scholar

    [12]

    Nandkishore R, Levitov L S, Chubukov A V 2012 Nat. Phys. 8 158Google Scholar

    [13]

    Kiesel M L, Platt C, Hanke W, Abanin D A, Thomale R 2012 Phys. Rev. B 86 020507(RGoogle Scholar

    [14]

    Nandkishore R, Thomale R, Chubukov A V 2014 Phys. Rev. B 89 144501Google Scholar

    [15]

    Xiao L Y, Yu S L, Wang W, Yao Z J, Li J X 2016 Europhys. Lett. 115 27008Google Scholar

    [16]

    Balatsky A V, Vekhter I, Zhu J X 2006 Rev. Mod. Phys. 78 373Google Scholar

    [17]

    Li Y Q, Zhou T 2021 Front. Phys. 16 43502Google Scholar

    [18]

    Awoga O A, Black-Schaffer A M 2018 Phys. Rev. B 97 214515Google Scholar

    [19]

    Wehling T O, Dahal H P, Lichtenstein A I, Balatsky A V 2008 Phys. Rev. B 78 035414Google Scholar

    [20]

    于渌 1965 物理学报 21 75Google Scholar

    Yu L 1965 Acta Phys. Sin. 21 75Google Scholar

    [21]

    Shiba H 1968 Progress of theoretical Physics 40 435Google Scholar

    [22]

    Rusinov A I 1969 Sov. Phys. JETP 29 1101

    [23]

    Yazdani A, Jones B A, Lutz C P, Crommie M F, Eigler D M 1997 Science 275 1767Google Scholar

    [24]

    Lado J L, Fernandez-Rossier J 2016 2D Mater. 3 025001Google Scholar

    [25]

    Río E C, Lado J L, Cherkez V, et al. 2021 Adv. Mater. 33 2008113Google Scholar

    [26]

    Cervenka J, Katsnelson M I, Flipse C F J 2009 Nat. Phys. 5 840Google Scholar

    [27]

    Akhukov M A, Fasolino A, Gornostyrev Y N, Katsnelson M I 2012 Phys. Rev. B 85 115407Google Scholar

    [28]

    Dutta S, Wakabayashi K 2015 Sci. Rep. 5 11744Google Scholar

    [29]

    Zuo X J, An J, Gong C D 2008 Phys. Rev.B 77 144512Google Scholar

    [30]

    Zuo X J, An J, Gong C D 2008 Phys. Rev.B 77 212508Google Scholar

  • [1] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [2] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算. 物理学报, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [4] 陈晨, 刘琴, 张童, 封东来. 电子型FeSe基高温超导体的磁通束缚态与Majorana零能模. 物理学报, 2021, 70(1): 017401. doi: 10.7498/aps.70.20201673
    [5] 李牮. 基于Yu-Shiba-Rusinov态的拓扑超导理论. 物理学报, 2020, 69(11): 117401. doi: 10.7498/aps.69.20200831
    [6] 张宇晟, 李敬东, 刘梦宇, 杨斌, 陈焕新, 王惠龄. 铜铁稀磁合金中铁磁杂质之间相互作用对低温热电势的影响. 物理学报, 2015, 64(15): 156101. doi: 10.7498/aps.64.156101
    [7] 陆法林, 陈昌远, 尤源. 双环形Hulthn势束缚态的近似解析解. 物理学报, 2013, 62(20): 200301. doi: 10.7498/aps.62.200301
    [8] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [9] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [10] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解. 物理学报, 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [11] 张民仓, 王振邦. 第二类P?schl-Teller势场中相对论粒子的束缚态. 物理学报, 2006, 55(2): 525-528. doi: 10.7498/aps.55.525
    [12] 张民仓, 王振邦. Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态. 物理学报, 2006, 55(2): 521-524. doi: 10.7498/aps.55.521
    [13] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解. 物理学报, 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [14] 李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态. 物理学报, 2005, 54(6): 2520-2523. doi: 10.7498/aps.54.2520
    [15] 陈子栋, 陈 刚. Hartmann势的Klein-Gordon方程束缚态解及递推关系. 物理学报, 2005, 54(6): 2524-2527. doi: 10.7498/aps.54.2524
    [16] 陈 刚. Rosen-Morse势阱中相对论粒子的束缚态. 物理学报, 2004, 53(3): 684-687. doi: 10.7498/aps.53.684
    [17] 陈 刚. 具有Wood-Saxon势的Dirac方程的束缚态. 物理学报, 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [18] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [19] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态. 物理学报, 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [20] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态. 物理学报, 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
计量
  • 文章访问数:  3087
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-23
  • 修回日期:  2023-08-30
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-10-20

/

返回文章
返回