搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子台阶调控二维单晶材料生长

常超 寇金宗 徐小志

引用本文:
Citation:

原子台阶调控二维单晶材料生长

常超, 寇金宗, 徐小志

Growth of two-dimensional single crystal materials controlled by atomic steps

Chang Chao, Kou Jin-Zong, Xu Xiao-Zhi
PDF
HTML
导出引用
  • 自2004年成功实现石墨烯的机械剥离制备以来, 二维材料凭借其独特的结构和物理化学性质, 在电子、光电和能源等领域引起了广泛的研究和发展. 在合成方法方面, 科研人员在传统的机械剥离、液相剥离、气相沉积、湿化学合成以及纳米材料相工程等基础上, 进一步推进了原子台阶方法, 用于制备高质量、大尺寸二维单晶材料(2DSCM). 本文详细介绍了近几年关于原子台阶调控2DSCM生长的代表性工作. 首先, 对研究背景进行了简要介绍; 然后, 讨论了2DSCM的主要合成方法, 并分析了外延制备非中心对称材料的困难及原因; 之后, 介绍了通过原子台阶辅助制备2DSCM的生长机制和最新进展, 分析了原子台阶调控2DSCM成核的理论基础及通用性, 并对未来实现大尺寸、方向可控的2DSCM的挑战和发展方向进行了预测; 最后, 系统展望了台阶方法制备大尺寸2DSCM在未来规模化芯片器件方向的潜在应用.
    Since the successful mechanical exfoliation of graphene in 2004, two-dimensional materials have aroused extensive research and fast developed in various fields such as electronics, optoelectronics and energy, owing to their unique structural and physicochemical properties. In terms of synthesis methods, researchers have made further advancements in the atomic step method, building upon traditional techniques such as mechanical exfoliation, liquid-phase exfoliation, vapor-phase deposition, wet chemical synthesis, and nanomaterial self-assembly. These efforts aim to achieve high-quality large-scale two-dimensional single crystal materials. In this article, the representative research on the growth of two-dimensional single crystal materials controlled by atomic steps in recent years is reviewed in detail. To begin with, the research background is briefly introduced, then the main synthesis methods of two-dimensional single crystal materials are discussed and the challenges and reasons for the difficulty in epitaxially preparing non-centrosymmetric materials are analyzed. Subsequently, the growth mechanisms and recent advances in the preparation of two-dimensional single crystal materials assisted by atomic steps are presented. The theoretical basis and universality of atomic step-controlled nucleation in two-dimensional single crystal material are analyzed. Furthermore, the challenges and future directions for achieving large-scale, directionally controllable two-dimensional single crystal materials are predicted. Finally, potential applications of the step method in the future scalable chip device fabrication are systematically discussed.
      通信作者: 寇金宗, jinzongkou@scnu.edu.cn ; 徐小志, xiaozhixu@scnu.edu.cn
    • 基金项目: 广东省自然科学基金杰出青年项目(批准号: 2020B1515020043)、广东省基础与应用基础研究基金(批准号: 2019A1515110302)和国家自然科学基金(批准号: 52102043)资助的课题.
      Corresponding author: Kou Jin-Zong, jinzongkou@scnu.edu.cn ; Xu Xiao-Zhi, xiaozhixu@scnu.edu.cn
    • Funds: Project supported by the Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2020B1515020043, 2019A1515110302) and the National Natural Science Foundation of China (Grant No. 52102043).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Huang H, Zha J, Li S, Tan C 2022 Chinese Chem. Lett. 33 163Google Scholar

    [4]

    Zhang J, Tan B, Zhang X, Gao F, Hu Y, Wang L, Duan X, Yang Z, Hu P 2021 Adv. Mater. 33 2000769Google Scholar

    [5]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [6]

    Miró P, Ghorbani-Asl M, Heine T 2014 Angew. Chem. Int. Edit. 53 3015Google Scholar

    [7]

    Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T 2019 Adv. Funct. Mater. 29 1904932Google Scholar

    [8]

    Si J, Yu J, Shen Y, Zeng M, Fu L 2021 Small Struct. 2 2000101Google Scholar

    [9]

    Lin Z, Wang C, Chai Y 2020 Small 16 2003319Google Scholar

    [10]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [11]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H 2017 Chem. Rev. 117 6225Google Scholar

    [12]

    Koman V B, Liu P, Kozawa D, Liu A T, Cottrill A L, Son Y, Lebron J A, Strano M S 2018 Nat. Nanotechnol. 13 819Google Scholar

    [13]

    Zhao C, Tan C, Lien D-H, Song X, Amani M, Hettick M, Nyein H Y Y, Yuan Z, Li L, Scott M C, Javey A 2020 Nat. Nanotechnol. 15 53Google Scholar

    [14]

    Zhu W, Low T, Wang H, Ye P, Duan X 2019 2D Mater. 6 032004Google Scholar

    [15]

    Conti S, Pimpolari L, Calabrese G, Worsley R, Majee S, Polyushkin D K, Paur M, Pace S, Keum D H, Fabbri F, Iannaccone G, Macucci M, Coletti C, Mueller T, Casiraghi C, Fiori G 2020 Nat. Commun. 11 3566Google Scholar

    [16]

    Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [17]

    Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S 2023 Nature 614 88Google Scholar

    [18]

    Wang J, Huang C, You Y, Guo Q, Xue G, Hong H, Jiao Q, Yu D, Du L, Zhao Y, Liu K 2022 J. Phys. Chem. C 126 3797Google Scholar

    [19]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H 2019 Nature 573 507Google Scholar

    [20]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338Google Scholar

    [21]

    Wang M, Huang M, Luo D, Li Y, Choe M, Seong W K, Kim M, Jin S, Wang M, Chatterjee S 2021 Nature 596 519Google Scholar

    [22]

    Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L 2021 Sci. Adv. 7 eabk0115Google Scholar

    [23]

    Shi Z, Wang X, Li Q, Yang P, Lu G, Jiang R, Wang H, Zhang C, Cong C, Liu Z, Wu T, Wang H, Yu Q, Xie X 2020 Nat. Commun. 11 849Google Scholar

    [24]

    Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548Google Scholar

    [25]

    Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004Google Scholar

    [26]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [27]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [28]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [29]

    Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834Google Scholar

    [30]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [31]

    Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331Google Scholar

    [32]

    Li J, Ding Y, Zhang D W, Zhou P 2019 Acta Phys. -Chim. Sin. 35 1058Google Scholar

    [33]

    Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar

    [34]

    Zhou X, Cheng J, Zhou Y, Cao T, Hong H, Liao Z, Wu S, Peng H, Liu K, Yu D 2015 J. Am. Chem. Soc. 137 7994Google Scholar

    [35]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [36]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019 Nat. Photonics 13 754Google Scholar

    [37]

    Hong H, Wu C, Zhao Z, Zuo Y, Wang J, Liu C, Zhang J, Wang F, Feng J, Shen H, Yin J, Wu Y, Zhao Y, Liu K, Gao P, Meng S, Wu S, Sun Z, Liu K, Xiong J 2021 Nat. Photonics 15 510Google Scholar

    [38]

    Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L 2020 Nat. Nanotechnol. 15 118Google Scholar

    [39]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [40]

    El-Kady M F, Shao Y, Kaner R B 2016 Nat. Rev. Mater. 1 16033Google Scholar

    [41]

    Xia J, Chen F, Li J, Tao N 2009 Nat. Nanotechnol. 4 505Google Scholar

    [42]

    Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F 2016 Nat. Mater. 15 48Google Scholar

    [43]

    Qin B, Wang D, Hong T, Wang Y, Liu D, Wang Z, Gao X, Ge Z H, Zhao L D 2023 Nat. Commun. 14 1366Google Scholar

    [44]

    Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447Google Scholar

    [45]

    Lee M, Renshof J R, van Zeggeren K J, Houmes M J, Lesne E, Šiškins M, van Thiel T C, Guis R H, van Blankenstein M R, Verbiest G J 2022 Adv. Mater. 34 2204630Google Scholar

    [46]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechnol. 8 119Google Scholar

    [47]

    Ye F, Lee J, Feng P X L 2018 Nano Lett. 18 1678Google Scholar

    [48]

    Mehmood A, Mubarak N, Khalid M, Walvekar R, Abdullah E, Siddiqui M, Baloch H A, Nizamuddin S, Mazari S 2020 J. Environ. Chem. Eng. 8 103743Google Scholar

    [49]

    Jiang H, Zheng L, Liu Z, Wang X 2020 InfoMat 2 1077Google Scholar

    [50]

    Liang J, Wang J, Zhang Z, Su Y, Guo Y, Qiao R, Song P, Gao P, Zhao Y, Jiao Q, Wu S, Sun Z, Yu D, Liu K 2019 Adv. Mater. 31 1808160Google Scholar

    [51]

    Liu T, Cui Z, Li X, Cui H, Liu Y 2020 ACS Omega 6 988Google Scholar

    [52]

    Jiang F, Zhao W S, Zhang J 2020 Microelectron. Eng. 225 111279Google Scholar

    [53]

    徐小志, 张晓闻, 王然, 曾凡凯, 周涛 2021 华南师范大学学报(自然科学版) 53 1

    Xu X Z, Zhang X W, Wang R, Zeng F K, Zhou T 2021 J. South China Normal Univ. (Natural Science Edition) 53 1

    [54]

    Xu X, Liu K 2022 Sci. Bull. 67 1410Google Scholar

    [55]

    Liu C, Wang L, Qi J, Liu K 2020 Adv. Mater. 32 2000046Google Scholar

    [56]

    刘天瑶, 刘灿, 刘开辉 2022 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2022 Acta Phys. Sin. 71 108103Google Scholar

    [57]

    Zhang Z, Forti S, Meng W, Pezzini S, Hu Z, Coletti C, Wang X, Liu K 2023 2D Mater. 10 032001Google Scholar

    [58]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110Google Scholar

    [59]

    Luo Z, Lu Y, Singer D W, Berck M E, Somers L A, Goldsmith B R, Johnson A C 2011 Chem. Mater. 23 1441Google Scholar

    [60]

    Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144Google Scholar

    [61]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [62]

    Safron N S, Kim M, Gopalan P, Arnold M S 2012 Adv. Mater. 24 1041Google Scholar

    [63]

    Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E 2012 ACS Nano 6 3614Google Scholar

    [64]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730Google Scholar

    [65]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [66]

    Xu X, Qiao R, Liang Z, Zhang Z, Wang R, Zeng F, Cui G, Zhang X, Zou D, Guo Y, Liu C, Fu Y, Zhou X, Wu M, Wang Z J, Zhao Y, Wang E, Tang Z, Yu D, Liu K 2022 Nano Res. 15 919Google Scholar

    [67]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 P. Natl. A. Sci. 109 7992Google Scholar

    [68]

    Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783Google Scholar

    [69]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096Google Scholar

    [70]

    Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318Google Scholar

    [71]

    Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137Google Scholar

    [72]

    Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646Google Scholar

    [73]

    Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379Google Scholar

    [74]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080Google Scholar

    [75]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [76]

    Zhang Z, Yang X, Liu K, Wang R 2022 Adv. Sci. 9 2105201Google Scholar

    [77]

    Young E P, Park J, Bai T, Choi C, DeBlock R H, Lange M, Poust S, Tice J, Cheung C, Dunn B S 2018 ACS Appl. Nano Mater. 1 4737Google Scholar

    [78]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [79]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [80]

    Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q 2018 Adv. Mater. 30 1804616Google Scholar

    [81]

    Jiao L, Jie W, Yang Z, Wang Y, Chen Z, Zhang X, Tang W, Wu Z, Hao J 2019 J. Mater. Chem. C 7 2522Google Scholar

    [82]

    Seo S, Choi H, Kim S Y, Lee J, Kim K, Yoon S, Lee B H, Lee S 2018 Adv. Mater. Interfaces 5 1800524Google Scholar

    [83]

    Keller B D, Bertuch A, Provine J, Sundaram G, Ferralis N, Grossman J C 2017 Chem. Mater. 29 2024Google Scholar

    [84]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano letters 13 2615Google Scholar

    [85]

    Shu H, Tao X M, Ding F 2015 Nanoscale 7 1627Google Scholar

    [86]

    Metin O, Mazumder V, Ozkar S, Sun S 2010 J. Am. Chem. Soc. 132 1468Google Scholar

    [87]

    Liu S, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2017 ACS Nano 11 3585Google Scholar

    [88]

    Liu S, Comer J, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2019 Nanoscale 11 5607Google Scholar

    [89]

    Zhang X, Xu Z, Hui L, Xin J, Ding F 2012 J. Phys. Chem. Lett. 3 2822Google Scholar

    [90]

    Dong J, Zhang L, Dai X, Ding F 2020 Nat. Commun. 11 5862Google Scholar

    [91]

    Wang Z J, Dong J, Li L, Dong G, Cui Y, Yang Y, Wei W, Blume R, Li Q, Wang L, Xu X, Liu K, Barroo C, Frenken J W M, Fu Q, Bao X, Schlögl R, Ding F, Willinger M G 2020 ACS Nano 14 1902Google Scholar

    [92]

    Dong J, Geng D, Liu F, Ding F 2019 Angew. Chem. Int. Edit. 58 7723Google Scholar

    [93]

    Zuo Y, Liu C, Ding L, Qiao R, Tian J, Liu C, Wang Q, Xue G, You Y, Guo Q, Wang J, Fu Y, Liu K, Zhou X, Hong H, Wu M, Lu X, Yang R, Zhang G, Yu D, Wang E, Bai X, Ding F, Liu K 2022 Nat. Commun. 13 1007Google Scholar

    [94]

    Zhao R, Zhao X, Liu Z, Ding F, Liu Z 2017 Nanoscale 9 3561Google Scholar

    [95]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H j 2009 Adv. Mater. 21 2777Google Scholar

    [96]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K I, Mizuno S 2012 Carbon 50 57Google Scholar

    [97]

    Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y 2019 Small 15 1805395Google Scholar

    [98]

    Braeuninger-Weimer P, Brennan B, Pollard A J, Hofmann S 2016 Chem. Mater. 28 8905Google Scholar

    [99]

    Wang Z J, Liang Z, Kong X, Zhang X, Qiao R, Wang J, Zhang S, Zhang Z, Xue C, Cui G, Zhang Z, Zou D, Liu Z, Li Q, Wei W, Zhou X, Tang Z, Yu D, Wang E, Liu K, Ding F, Xu X 2022 Nano Lett. 22 4661Google Scholar

    [100]

    Zhang Z, Xu X, Qiu L, Wang S, Wu T, Ding F, Peng H, Liu K 2017 Adv. Sci. 4 1700087Google Scholar

    [101]

    Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966Google Scholar

    [102]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [103]

    Xu X, Lin C, Fu R, Wang S, Pan R, Chen G, Shen Q, Liu C, Guo X, Wang Y, Zhao R, Liu K, Luo Z, Hu Z, Li H 2016 AIP Adv. 6 025026Google Scholar

    [104]

    Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y, Wang X 2022 Nature 605 69Google Scholar

    [105]

    Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368Google Scholar

    [106]

    Deshpande S, Heo J, Das A, Bhattacharya P 2013 Nat. Commun. 4 1675Google Scholar

    [107]

    Kim I H, Park H S, Park Y J, Kim T 1998 Appl. Phys. Lett. 73 1634Google Scholar

    [108]

    Wang R, Koch N, Martin J, Sadofev S 2023 Phys. Status. Solidi-R 17 2200476Google Scholar

    [109]

    Zhang Z, Ding M, Cheng T, Qiao R, Zhao M, Luo M, Wang E, Sun Y, Zhang S, Li X, Zhang Z, Mao H, Liu F, Fu Y, Liu K, Zou D, Liu C, Wu M, Fan C, Zhu Q, Wang X, Gao P, Li Q, Liu K, Zhang Y, Bai X, Yu D, Ding F, Wang E, Liu K 2022 Nat. Nanotechnol. 17 1258Google Scholar

    [110]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [111]

    Jiang S, Hong M, Wei W, Zhao L, Zhang N, Zhang Z, Yang P, Gao N, Zhou X, Xie C 2018 Commun. Chem. 1 17Google Scholar

    [112]

    Wu K, Chen B, Yang S, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A 2016 Nano Lett. 16 5888Google Scholar

    [113]

    Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D 2017 Small 13 1604179Google Scholar

    [114]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513Google Scholar

    [115]

    Wang X, He J, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J 2018 Angew. Chem. Ger. Edit 130 8804Google Scholar

    [116]

    Yuhara J, Shimazu H, Ito K, Ohta A, Araidai M, Kurosawa M, Nakatake M, Le Lay G 2018 ACS Nano 12 11632Google Scholar

    [117]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017Google Scholar

    [118]

    Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q 2019 Adv. Mater. 31 1807874Google Scholar

    [119]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [120]

    Yuan Q, Yakobson B I, Ding F 2014 J. Phys. Chem. Lett. 5 3093Google Scholar

    [121]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2017 J. Am. Chem. Soc. 139 482Google Scholar

    [122]

    Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645Google Scholar

    [123]

    Wang S, Dearle A E, Maruyama M, Ogawa Y, Okada S, Hibino H, Taniyasu Y 2019 Adv. Mater. 31 1900880Google Scholar

    [124]

    Li P, Wei W, Zhang M, Mei Y, Chu P K, Xie X, Yuan Q, Di Z 2020 Nano Today 34 100908Google Scholar

    [125]

    Nie S, Wofford J M, Bartelt N C, Dubon O D, McCarty K F 2011 Phys. Rev. B 84 155425Google Scholar

    [126]

    Griep M H, Sandoz-Rosado E, Tumlin T M, Wetzel E 2016 Nano Lett. 16 1657Google Scholar

    [127]

    Dai J, Wang D, Zhang M, Niu T, Li A, Ye M, Qiao S, Ding G, Xie X, Wang Y 2016 Nano Lett. 16 3160Google Scholar

    [128]

    Driver S, Toomes R, Woodruff D 2016 Surf. Sci. 646 114Google Scholar

    [129]

    Bets K V, Gupta N, Yakobson B I 2019 Nano Lett. 19 2027Google Scholar

    [130]

    Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y 2020 Nature 579 219Google Scholar

    [131]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [132]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [133]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [134]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [135]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [136]

    Hou Y, Wang B, Zhan L, Qing F, Wang X, Niu X, Li X 2020 Mater. Today 36 10Google Scholar

    [137]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443Google Scholar

    [138]

    Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406Google Scholar

    [139]

    Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034Google Scholar

    [140]

    Li L, Ma T, Yu W, Zhu M, Li J, Chen Z, Li H, Zhao M, Teng J, Tian B, Su C, Loh K P 2021 2D Mater. 8 035019Google Scholar

    [141]

    Wan Y, Fu J H, Chuu C P, Tung V, Shi Y, Li L J 2022 Chem. Soc. Rev. 51 803Google Scholar

    [142]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [143]

    Zhang Z, Penev E S, Yakobson B I 2016 Nat. Chem. 8 525Google Scholar

    [144]

    Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W 2017 Adv. Funct. Mater. 27 1603300Google Scholar

    [145]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Edit. 52 3156Google Scholar

    [146]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [147]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [148]

    Liu H, Gao J, Zhao J 2013 Sci. Rep. -UK 3 3238Google Scholar

    [149]

    Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P, Wu K 2018 Sci. Bull. 63 282Google Scholar

    [150]

    Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [151]

    Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [152]

    Wu R, Eltinge S, Drozdov I K, Gozar A, Zahl P, Sadowski J T, Ismail-Beigi S, Božović I 2022 Nat. Chem. 14 377Google Scholar

    [153]

    Yang W, Berthou S, Lu X, Wilmart Q, Denis A, Rosticher M, Taniguchi T, Watanabe K, Fève G, Berroir J M, Zhang G, Voisin C, Baudin E, Plaçais B 2018 Nat. Nanotechnol. 13 47Google Scholar

    [154]

    Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112Google Scholar

    [155]

    Hu S, Lozada-Hidalgo M, Wang F, Mishchenko A, Schedin F, Nair R R, Hill E, Boukhvalov D, Katsnelson M, Dryfe R A 2014 Nature 516 227Google Scholar

    [156]

    Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614Google Scholar

    [157]

    Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar

    [158]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A-P, Gu G 2014 Science 343 163Google Scholar

    [159]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [160]

    Ma K Y, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88Google Scholar

    [161]

    Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo J C, Jung J, MacDonald A H, Vajtai R, Lou J, Ajayan P M 2013 Nat. Commun. 4 2541Google Scholar

    [162]

    Caneva S, Weatherup R S, Bayer B C, Blume R, Cabrero-Vilatela A, Braeuninger-Weimer P, Martin M-B, Wang R, Baehtz C, Schloegl R, Meyer J C, Hofmann S 2016 Nano Lett. 16 1250Google Scholar

    [163]

    Liu D, Chen X, Yan Y, Zhang Z, Jin Z, Yi K, Zhang C, Zheng Y, Wang Y, Yang J, Xu X, Chen J, Lu Y, Wei D, Wee A T S, Wei D 2019 Nat. Commun. 10 1188Google Scholar

    [164]

    Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, Shin H S 2016 Nano Lett. 16 3360Google Scholar

    [165]

    Biswas A, Ruan Q, Lee F, Li C, Iyengar S A, Puthirath A B, Zhang X, Kannan H, Gray T, Birdwell A G, Neupane M R, Shah P B, Ruzmetov D A, Ivanov T G, Vajtai R, Tripathi M, Dalton A, Yakobson B I, Ajayan P M 2023 Appl. Mater. Today 30 101734Google Scholar

    [166]

    Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S 2013 Nano Lett. 13 1852Google Scholar

    [167]

    Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y 2013 ACS Nano 7 8963Google Scholar

    [168]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [169]

    Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J-C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754Google Scholar

    [170]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [171]

    Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y 2023 ACS Nano 17 312Google Scholar

    [172]

    Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X, Zhang Y 2022 Nat. Commun. 13 3238Google Scholar

    [173]

    Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V 2020 Nat. Mater. 19 1300Google Scholar

    [174]

    Aljarb A, Cao Z, Tang H L, Huang J K, Li M, Hu W, Cavallo L, Li L J 2017 ACS Nano 11 9215Google Scholar

    [175]

    Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33Google Scholar

    [176]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246Google Scholar

    [177]

    Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611Google Scholar

    [178]

    Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D, Zhang G 2020 Nat. Electron. 3 711Google Scholar

    [179]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [180]

    Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, Guo W 2015 Small 11 5375Google Scholar

    [181]

    Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14 592Google Scholar

    [182]

    Ma Z, Wang S, Deng Q, Hou Z, Zhou X, Li X, Cui F, Si H, Zhai T, Xu H 2020 Small 16 2000596Google Scholar

    [183]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532Google Scholar

    [184]

    Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601Google Scholar

    [185]

    Li J, Wang S, Jiang Q, Qian H, Hu S, Kang H, Chen C, Zhan X, Yu A, Zhao S, Zhang Y, Chen Z, Sui Y, Qiao S, Yu G, Peng S, Jin Z, Liu X 2021 Small 17 2100743Google Scholar

    [186]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J-A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [187]

    Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700Google Scholar

    [188]

    Pan S, Yang P, Zhu L, Hong M, Xie C, Zhou F, Shi Y, Huan Y, Cui F, Zhang Y 2021 Nanotechnology 32 095601Google Scholar

    [189]

    Tumino F, Grazianetti C, Martella C, Ruggeri M, Russo V, Li Bassi A, Molle A, Casari C S 2021 J. Phys. Chem. C 125 9479Google Scholar

    [190]

    Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, Ruoff R S 2016 Nanoscale 8 2434Google Scholar

    [191]

    Uchida Y, Iwaizako T, Mizuno S, Tsuji M, Ago H 2017 Phys. Chem. Chem. Phys. 19 8230Google Scholar

    [192]

    Taslim A B, Nakajima H, Lin Y C, Uchida Y, Kawahara K, Okazaki T, Suenaga K, Hibino H, Ago H 2019 Nanoscale 11 14668Google Scholar

    [193]

    Butashin A V, Vlasov V P, Kanevskii V M, Muslimov A E, Fedorov V A 2012 Crystallogr. Rep.+ 57 824Google Scholar

    [194]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [195]

    Li X, Shi X, Marian D, Soriano D, Cusati T, Iannaccone G, Fiori G, Guo Q, Zhao W, Wu Y 2023 Sci. Adv. 9 eade5706Google Scholar

    [196]

    Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y 2020 Science 367 903Google Scholar

    [197]

    Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P 2022 Nat. Chem. 14 25Google Scholar

    [198]

    Zhang X, Huangfu L, Gu Z, Xiao S, Zhou J, Nan H, Gu X, Ostrikov K 2021 Small 17 2007312Google Scholar

  • 图 1  (a)单核生长和(b)外延生长原理示意图

    Fig. 1.  Schematic diagrams of (a) single nuclei growth and (b) epitaxial growth.

    图 2  (a)中心对称和(b)非中心对称二维材料的原子结构示意图. 图(a)中灰色圆球对应同种元素原子; 图(b)中橙色圆球和蓝色圆球分别对应2种元素原子. 中心对称的结构翻转180°后可以复原, 非中心对称的结构翻转180°后无法复原

    Fig. 2.  Schematic diagrams of atomic structure of (a) centrosymmetric and (b) non-centrosymmetric 2D materials. Gray balls in Fig. (a) correspond to the same kind of atoms, orange and blue balls in Fig. (b) correspond to two kinds of atoms, respectively. A centrosymmetric structure can be restored after being turned over 180°, and a non-centrosymmetric structure cannot be restored after being turned over 180°.

    图 3  在Cu (a) (112), (b) (113), (c) (133)和(d) (223)晶面上制备的单向排列石墨烯SEM图[138]

    Fig. 3.  SEM images of unidirectionally aligned graphene domains on (a) (112), (b) (113), (c) (133) and (d) (223) facets of Cu[138].

    图 4  (a) Ge (110)面单向排列石墨烯SEM图[142]; (b)单晶单层石墨烯的HRTEM图[142]; (c)石墨烯种子沿Ge (110)面的[$ \overline 1 10 $]方向单向排列的AFM图[127]; (d), (e)石墨烯成核与台阶边缘对接的单向排列示意图[127]

    Fig. 4.  (a) SEM image of unidirectional graphene grown on Ge (110) surface[142]; (b) HRTEM image of single crystal monolayer graphene[142]; (c) AFM image of graphene seeds aligned along [$ \overline 1 10 $] direction of Ge (110) surface[127]; (d), (e) schematic illustration of graphene nucleation docking with the step edge for unidirectional alignment[127].

    图 5  (a) Cu (110)面单向排列的hBN SEM图; (b) hBN晶畴拼接处的TEM图, 插图为低倍TEM图; (c), (d) H2在1000 ℃下经30 min刻蚀Cu(110)和Cu(111)上hBN的SEM图; (e) hBN晶格之字形边缘与Cu(110)表面的Cu$ \langle {211} \rangle $方向台阶结合原子示意图; (f)不同hBN边缘与Cu (110)表面的Cu $ \langle {211} \rangle $方向台阶形成能[158]

    Fig. 5.  (a) SEM image of as-grown unidirectionally aligned hBN domains on Cu (110) substrate; (b) TEM images of neighboring merged hBN domains, inset shows the same image at a lower magnification; (c), (d) SEM images of hBN film as-grown on Cu(110) and Cu(111) surfaces after H2 etching at 1, 000 ℃ for 30 min; (e) atomic configuration of a zigzag edge of hBN lattice attaching to the Cu$ \left\langle {211} \right\rangle $ atomic step edge on the vicinal Cu (110) surface; (f) formation energies of various hBN edges attached to a Cu $\langle {211}\rangle $ step edge of vicinal Cu(110) substrate[158].

    图 6  (a), (b)制备单晶Au (111)的示意图及CVD法在其表面生长MoS2的SEM图[169]; (c)—(e) Au (607) , Au (2 1 11) 面的MoS2 SEM以及拉曼图[170]; (f), (h)MoS2形态变化示意图; (g), (i)不同S/Mo比例下制备的2D MoS2三角形、1D MoS2纳米带SEM图[171]

    Fig. 6.  (a), (b) Schematic illustration of processes of single crystal Au(111) formation and SEM image of MoS2 grown on its surface by CVD method[169]; (c)–(e) SEM images and Raman spectra of MoS2 on Au (607), Au (2 1 11)facets[170]; (f), (h) schematic illustration of the morphological evolution of MoS2; (g), (i) SEM images of 2D monolayer MoS2 triangles and 1D MoS2 nanoribbons at different S/Mo ratios[171].

    图 7  (a) O2刻蚀WS2薄膜后的SEM图; (b)对齐WS2岛拼接区域STEM图; (c) WS2晶格STEM图; (d) 2 inch单层WS2薄膜光学图; (e) a-Al2O3独立WS2晶畴光学图; (f), (g)WS2晶畴AFM图, 台阶方向$\langle 1\bar 1 01 \rangle$[174]

    Fig. 7.  (a) SEM image of WS2 films after O2 etching; (b) STEM image of merged area of aligned WS2 islands; (c) STEM image of WS2 lattice; (d) photograph of 2 inch WS2 monolayer thin film; (e) optical image of individual WS2 islands on a-Al2O3; (f), (g) AFM image of a WS2 island, the direction of the steps is $ \langle1\bar 1 01 \rangle$[174].

    图 8  不同成核位置导致不同生长结果的原理示意图 (a)同时在台阶边缘和台阶平面处成核会导致正反取向; (b)只在台阶边缘处成核会导致单一取向

    Fig. 8.  Schematic diagrams of different growth results at different nucleation positions: (a) Positive and negative orientation when nucleation occur on both step edges and terrace; (b) single orientation when nucleation only occurs on step edges.

    图 9  (a)退火前c-Al2O3表面; (b)退火中c-Al2O3表面; (c)长时间退火后c-Al2O3表面; (d)MoS2边缘同氧空位缺陷台阶与无氧空位平行台阶结合能; (e)反平行MoS2晶畴跨不同台阶(Ⅰ, Ⅱ和Ⅲ)能量; (f)3种台阶边缘处MoS2边缘[180]

    Fig. 9.  (a) Original c-Al2O3 surface before annealing; (b) original c-Al2O3 surface during annealing; (c) original c-Al2O3 surface after a long annealing time; (d) binding energy of a MoS2 grain on a straight parallel step with O vacancy and on a defective step without O vacancy; (e) energy difference between antiparallel MoS2 grains that cross different types of step edges (Ⅰ, Ⅱ and Ⅲ); (f) MoS2 grain on three types of step edges[180].

    图 10  (a), (b)穿过c-Al2O3台阶边缘的2个反平行WS2晶粒示意图; (c) 2个反平行WS2晶粒之间的能量差; (d), (e)穿过a-Al2O3台阶边缘的2个反平行WS2(MoS2)晶粒示意图; (f) 2个反平行WS2(MoS2)晶粒之间的能量差, 沿着不同方向的台阶都是为了打破反平行线[180]

    Fig. 10.  (a), (b) Schematic diagrams of two antiparallel WS2 grains that across a step edge of c-Al2O3; (c) energy difference between two antiparallel WS2 grains; (d), (e) schematic diagrams of two antiparallel WS2 (MoS2) grains that across a step edge of a-Al2O3; (f) energy difference between two antiparallel WS2 (MoS2) grains. Steps along different directions all work for breaking of antiparallel alignments[180].

    表 1  二维材料的应用领域及其挑战

    Table 1.  Applications and future challenges of two-dimensional materials.

    领域 应用方向 优势 挑战
    电子 晶体管、传感器、存储设备、互连、柔性电子产品、透明导电薄膜 高载流子迁移率、可调带隙、优异的机械和化学稳定性 可扩展性、可重复性、接口工程、设备集成、环境稳定性
    光电子 LEDs、太阳能电池、光电探测、光调制器、吸收器 高载流子迁移率、可调带隙、优异的光吸收和发射 可重复性、环境稳定性、界面能源、设备集成、成本
    催化 水分解、CO2还原、析氢反应、氧化还原反应 高比表面积、可调电子和化学性能、催化活性 可扩展性、反应稳定性、优异的选择性、成本
    储能 电池、超级电容器、燃料电池、电催化、储氢 高表面积、可调的电子和化学性能、优异的电化学性能 可扩展性、反应稳定性、选择性、成本、毒性
    传感器 气体、生物、应变传感器 灵敏度高、选择性好、电子和化学性能可调、稳定性好 可扩展性、环境稳定性、选择性、设备集成
    生物医学 药物输送、生物传感、组织工程、生物成像 生物相容性、高表面积、可调的电子和化学性质、稳定性 选择性、可扩展性、毒性、生物环境稳定性、监管批准
    环境 水处理、空气净化、能量收集 高表面积、电子和化学性能可调、优异的光催化和电催化 可扩展性、环境稳定性、选择性、成本
    下载: 导出CSV

    表 2  衬底台阶调控TMDs生长[180]

    Table 2.  Controversial growth behaviours of TMDs on substrates with steps[180].

    Substrate TMDs Alignment/% Symmetry
    breaking
    Ref.
    a-Al2O3 WS2 99 [174]
    a-Al2O3 MoS2 86 [181]
    c-Al2O3 MoS2 99 [16]
    c-Al2O3 WS2 >90 [182]
    c-Al2O3 WSe2 92 [105]
    Au(533) WS2 >90 [183]
    Au(111) MoS2 99 [184]
    Au(111) MoS2 98 [169]
    β-Ga2O3 MoS2 >90 [172]
    c-Al2O3 MoS2 50 × [177]
    c-Al2O3 MoS2 50 × [178]
    c-Al2O3 MoS2 60 × [173]
    c-Al2O3 MoS2 50 × [185]
    c-Al2O3 MoS2 56 × [176]
    Au(111) MoS2 50 × [186]
    Au(111) MoS2 50 × [187]
    Ag(111) MoS2 50 × [188]
    下载: 导出CSV

    表 3  衬底台阶调控hBN生长[180]

    Table 3.  Controversial growth behaviours of hBN on substrates with steps[180].

    Substrate Alignment/% Symmetry
    breaking
    Ref.
    Cu (110) 99 [158]
    Cu (111) 99 [130]
    Cu (102)
    Cu (103)
    97 [122]
    Cu (110) 50 × [189]
    Cu (110)
    Cu (111)
    21
    54
    × [75]
    Cu (111) 50 × [190]
    Ni (111) 50 × [113]
    Ni (111) 54 × [191]
    Ge (110) 52 × [179]
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Huang H, Zha J, Li S, Tan C 2022 Chinese Chem. Lett. 33 163Google Scholar

    [4]

    Zhang J, Tan B, Zhang X, Gao F, Hu Y, Wang L, Duan X, Yang Z, Hu P 2021 Adv. Mater. 33 2000769Google Scholar

    [5]

    Caldwell J D, Aharonovich I, Cassabois G, Edgar J H, Gil B, Basov D N 2019 Nat. Rev. Mater. 4 552Google Scholar

    [6]

    Miró P, Ghorbani-Asl M, Heine T 2014 Angew. Chem. Int. Edit. 53 3015Google Scholar

    [7]

    Pi L, Li L, Liu K, Zhang Q, Li H, Zhai T 2019 Adv. Funct. Mater. 29 1904932Google Scholar

    [8]

    Si J, Yu J, Shen Y, Zeng M, Fu L 2021 Small Struct. 2 2000101Google Scholar

    [9]

    Lin Z, Wang C, Chai Y 2020 Small 16 2003319Google Scholar

    [10]

    Mannix A J, Zhang Z, Guisinger N P, Yakobson B I, Hersam M C 2018 Nat. Nanotechnol. 13 444Google Scholar

    [11]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H 2017 Chem. Rev. 117 6225Google Scholar

    [12]

    Koman V B, Liu P, Kozawa D, Liu A T, Cottrill A L, Son Y, Lebron J A, Strano M S 2018 Nat. Nanotechnol. 13 819Google Scholar

    [13]

    Zhao C, Tan C, Lien D-H, Song X, Amani M, Hettick M, Nyein H Y Y, Yuan Z, Li L, Scott M C, Javey A 2020 Nat. Nanotechnol. 15 53Google Scholar

    [14]

    Zhu W, Low T, Wang H, Ye P, Duan X 2019 2D Mater. 6 032004Google Scholar

    [15]

    Conti S, Pimpolari L, Calabrese G, Worsley R, Majee S, Polyushkin D K, Paur M, Pace S, Keum D H, Fabbri F, Iannaccone G, Macucci M, Coletti C, Mueller T, Casiraghi C, Fiori G 2020 Nat. Commun. 11 3566Google Scholar

    [16]

    Li T, Guo W, Ma L, Li W, Yu Z, Han Z, Gao S, Liu L, Fan D, Wang Z, Yang Y, Lin W, Luo Z, Chen X, Dai N, Tu X, Pan D, Yao Y, Wang P, Nie Y, Wang J, Shi Y, Wang X 2021 Nat. Nanotechnol. 16 1201Google Scholar

    [17]

    Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S 2023 Nature 614 88Google Scholar

    [18]

    Wang J, Huang C, You Y, Guo Q, Xue G, Hong H, Jiao Q, Yu D, Du L, Zhao Y, Liu K 2022 J. Phys. Chem. C 126 3797Google Scholar

    [19]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H 2019 Nature 573 507Google Scholar

    [20]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338Google Scholar

    [21]

    Wang M, Huang M, Luo D, Li Y, Choe M, Seong W K, Kim M, Jin S, Wang M, Chatterjee S 2021 Nature 596 519Google Scholar

    [22]

    Chen Z, Xie C, Wang W, Zhao J, Liu B, Shan J, Wang X, Hong M, Lin L, Huang L 2021 Sci. Adv. 7 eabk0115Google Scholar

    [23]

    Shi Z, Wang X, Li Q, Yang P, Lu G, Jiang R, Wang H, Zhang C, Cong C, Liu Z, Wu T, Wang H, Yu Q, Xie X 2020 Nat. Commun. 11 849Google Scholar

    [24]

    Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y 2011 J. Am. Chem. Soc. 133 17548Google Scholar

    [25]

    Wang H, Xue X, Jiang Q, Wang Y, Geng D, Cai L, Wang L, Xu Z, Yu G 2019 J. Am. Chem. Soc. 141 11004Google Scholar

    [26]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [27]

    Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S 2013 Science 342 720Google Scholar

    [28]

    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B, Stampfer C 2015 Sci. Adv. 1 e1500222Google Scholar

    [29]

    Cheng Z, Cao R, Wei K, Yao Y, Liu X, Kang J, Dong J, Shi Z, Zhang H, Zhang X 2021 Adv. Sci. 8 2003834Google Scholar

    [30]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [31]

    Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331Google Scholar

    [32]

    Li J, Ding Y, Zhang D W, Zhou P 2019 Acta Phys. -Chim. Sin. 35 1058Google Scholar

    [33]

    Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar

    [34]

    Zhou X, Cheng J, Zhou Y, Cao T, Hong H, Liao Z, Wu S, Peng H, Liu K, Yu D 2015 J. Am. Chem. Soc. 137 7994Google Scholar

    [35]

    Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z 2020 Nat. Nanotechnol. 15 987Google Scholar

    [36]

    Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z, Wang F, Liu K, Liu Z 2019 Nat. Photonics 13 754Google Scholar

    [37]

    Hong H, Wu C, Zhao Z, Zuo Y, Wang J, Liu C, Zhang J, Wang F, Feng J, Shen H, Yin J, Wu Y, Zhao Y, Liu K, Gao P, Meng S, Wu S, Sun Z, Liu K, Xiong J 2021 Nat. Photonics 15 510Google Scholar

    [38]

    Flöry N, Ma P, Salamin Y, Emboras A, Taniguchi T, Watanabe K, Leuthold J, Novotny L 2020 Nat. Nanotechnol. 15 118Google Scholar

    [39]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [40]

    El-Kady M F, Shao Y, Kaner R B 2016 Nat. Rev. Mater. 1 16033Google Scholar

    [41]

    Xia J, Chen F, Li J, Tao N 2009 Nat. Nanotechnol. 4 505Google Scholar

    [42]

    Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F 2016 Nat. Mater. 15 48Google Scholar

    [43]

    Qin B, Wang D, Hong T, Wang Y, Liu D, Wang Z, Gao X, Ge Z H, Zhao L D 2023 Nat. Commun. 14 1366Google Scholar

    [44]

    Kotakoski J, Meyer J C 2012 Phys. Rev. B 85 195447Google Scholar

    [45]

    Lee M, Renshof J R, van Zeggeren K J, Houmes M J, Lesne E, Šiškins M, van Thiel T C, Guis R H, van Blankenstein M R, Verbiest G J 2022 Adv. Mater. 34 2204630Google Scholar

    [46]

    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P 2013 Nat. Nanotechnol. 8 119Google Scholar

    [47]

    Ye F, Lee J, Feng P X L 2018 Nano Lett. 18 1678Google Scholar

    [48]

    Mehmood A, Mubarak N, Khalid M, Walvekar R, Abdullah E, Siddiqui M, Baloch H A, Nizamuddin S, Mazari S 2020 J. Environ. Chem. Eng. 8 103743Google Scholar

    [49]

    Jiang H, Zheng L, Liu Z, Wang X 2020 InfoMat 2 1077Google Scholar

    [50]

    Liang J, Wang J, Zhang Z, Su Y, Guo Y, Qiao R, Song P, Gao P, Zhao Y, Jiao Q, Wu S, Sun Z, Yu D, Liu K 2019 Adv. Mater. 31 1808160Google Scholar

    [51]

    Liu T, Cui Z, Li X, Cui H, Liu Y 2020 ACS Omega 6 988Google Scholar

    [52]

    Jiang F, Zhao W S, Zhang J 2020 Microelectron. Eng. 225 111279Google Scholar

    [53]

    徐小志, 张晓闻, 王然, 曾凡凯, 周涛 2021 华南师范大学学报(自然科学版) 53 1

    Xu X Z, Zhang X W, Wang R, Zeng F K, Zhou T 2021 J. South China Normal Univ. (Natural Science Edition) 53 1

    [54]

    Xu X, Liu K 2022 Sci. Bull. 67 1410Google Scholar

    [55]

    Liu C, Wang L, Qi J, Liu K 2020 Adv. Mater. 32 2000046Google Scholar

    [56]

    刘天瑶, 刘灿, 刘开辉 2022 物理学报 71 108103Google Scholar

    Liu T Y, Liu C, Liu K H 2022 Acta Phys. Sin. 71 108103Google Scholar

    [57]

    Zhang Z, Forti S, Meng W, Pezzini S, Hu Z, Coletti C, Wang X, Liu K 2023 2D Mater. 10 032001Google Scholar

    [58]

    Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel E L, Kittrell C, Tour J M 2012 ACS Nano 6 9110Google Scholar

    [59]

    Luo Z, Lu Y, Singer D W, Berck M E, Somers L A, Goldsmith B R, Johnson A C 2011 Chem. Mater. 23 1441Google Scholar

    [60]

    Han G H, Gunes F, Bae J J, Kim E S, Chae S J, Shin H J, Choi J Y, Pribat D, Lee Y H 2011 Nano Lett. 11 4144Google Scholar

    [61]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [62]

    Safron N S, Kim M, Gopalan P, Arnold M S 2012 Adv. Mater. 24 1041Google Scholar

    [63]

    Kim H, Mattevi C, Calvo M R, Oberg J C, Artiglia L, Agnoli S, Hirjibehedin C F, Chhowalla M, Saiz E 2012 ACS Nano 6 3614Google Scholar

    [64]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nat. Chem. 11 730Google Scholar

    [65]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [66]

    Xu X, Qiao R, Liang Z, Zhang Z, Wang R, Zeng F, Cui G, Zhang X, Zou D, Guo Y, Liu C, Fu Y, Zhou X, Wu M, Wang Z J, Zhao Y, Wang E, Tang Z, Yu D, Liu K 2022 Nano Res. 15 919Google Scholar

    [67]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 P. Natl. A. Sci. 109 7992Google Scholar

    [68]

    Zang X, Zhou Q, Chang J, Teh K S, Wei M, Zettl A, Lin L 2017 Adv. Mater. Interfaces 4 1600783Google Scholar

    [69]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096Google Scholar

    [70]

    Vlassiouk I V, Stehle Y, Pudasaini P R, Unocic R R, Rack P D, Baddorf A P, Ivanov I N, Lavrik N V, List F, Gupta N, Bets K V, Yakobson B I, Smirnov S N 2018 Nat. Mater. 17 318Google Scholar

    [71]

    Chung J W, Dai Z R, Ohuchi F S 1998 J. Cryst. Growth 186 137Google Scholar

    [72]

    Cun H, Macha M, Kim H, Liu K, Zhao Y, LaGrange T, Kis A, Radenovic A 2019 Nano Res. 12 2646Google Scholar

    [73]

    Ishihara S, Hibino Y, Sawamoto N, Machida H, Wakabayashi H, Ogura A 2018 MRS Adv. 3 379Google Scholar

    [74]

    Eichfeld S M, Hossain L, Lin Y C, Piasecki A F, Kupp B, Birdwell A G, Burke R A, Lu N, Peng X, Li J, Azcatl A, McDonnell S, Wallace R M, Kim M J, Mayer T S, Redwing J M, Robinson J A 2015 ACS Nano 9 2080Google Scholar

    [75]

    Song X, Gao J, Nie Y, Gao T, Sun J, Ma D, Li Q, Chen Y, Jin C, Bachmatiuk A, Rümmeli M H, Ding F, Zhang Y, Liu Z 2015 Nano Res. 8 3164Google Scholar

    [76]

    Zhang Z, Yang X, Liu K, Wang R 2022 Adv. Sci. 9 2105201Google Scholar

    [77]

    Young E P, Park J, Bai T, Choi C, DeBlock R H, Lange M, Poust S, Tice J, Cheung C, Dunn B S 2018 ACS Appl. Nano Mater. 1 4737Google Scholar

    [78]

    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D 2015 Nat. Nanotechnol. 10 227Google Scholar

    [79]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [80]

    Shi J, Chen X, Zhao L, Gong Y, Hong M, Huan Y, Zhang Z, Yang P, Li Y, Zhang Q 2018 Adv. Mater. 30 1804616Google Scholar

    [81]

    Jiao L, Jie W, Yang Z, Wang Y, Chen Z, Zhang X, Tang W, Wu Z, Hao J 2019 J. Mater. Chem. C 7 2522Google Scholar

    [82]

    Seo S, Choi H, Kim S Y, Lee J, Kim K, Yoon S, Lee B H, Lee S 2018 Adv. Mater. Interfaces 5 1800524Google Scholar

    [83]

    Keller B D, Bertuch A, Provine J, Sundaram G, Ferralis N, Grossman J C 2017 Chem. Mater. 29 2024Google Scholar

    [84]

    Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano letters 13 2615Google Scholar

    [85]

    Shu H, Tao X M, Ding F 2015 Nanoscale 7 1627Google Scholar

    [86]

    Metin O, Mazumder V, Ozkar S, Sun S 2010 J. Am. Chem. Soc. 132 1468Google Scholar

    [87]

    Liu S, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2017 ACS Nano 11 3585Google Scholar

    [88]

    Liu S, Comer J, Van Duin A C, Van Duin D M, Liu B, Edgar J H 2019 Nanoscale 11 5607Google Scholar

    [89]

    Zhang X, Xu Z, Hui L, Xin J, Ding F 2012 J. Phys. Chem. Lett. 3 2822Google Scholar

    [90]

    Dong J, Zhang L, Dai X, Ding F 2020 Nat. Commun. 11 5862Google Scholar

    [91]

    Wang Z J, Dong J, Li L, Dong G, Cui Y, Yang Y, Wei W, Blume R, Li Q, Wang L, Xu X, Liu K, Barroo C, Frenken J W M, Fu Q, Bao X, Schlögl R, Ding F, Willinger M G 2020 ACS Nano 14 1902Google Scholar

    [92]

    Dong J, Geng D, Liu F, Ding F 2019 Angew. Chem. Int. Edit. 58 7723Google Scholar

    [93]

    Zuo Y, Liu C, Ding L, Qiao R, Tian J, Liu C, Wang Q, Xue G, You Y, Guo Q, Wang J, Fu Y, Liu K, Zhou X, Hong H, Wu M, Lu X, Yang R, Zhang G, Yu D, Wang E, Bai X, Ding F, Liu K 2022 Nat. Commun. 13 1007Google Scholar

    [94]

    Zhao R, Zhao X, Liu Z, Ding F, Liu Z 2017 Nanoscale 9 3561Google Scholar

    [95]

    Pan Y, Zhang H, Shi D, Sun J, Du S, Liu F, Gao H j 2009 Adv. Mater. 21 2777Google Scholar

    [96]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Magome E, Sumitani K, Mizuta N, Ikeda K I, Mizuno S 2012 Carbon 50 57Google Scholar

    [97]

    Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y 2019 Small 15 1805395Google Scholar

    [98]

    Braeuninger-Weimer P, Brennan B, Pollard A J, Hofmann S 2016 Chem. Mater. 28 8905Google Scholar

    [99]

    Wang Z J, Liang Z, Kong X, Zhang X, Qiao R, Wang J, Zhang S, Zhang Z, Xue C, Cui G, Zhang Z, Zou D, Liu Z, Li Q, Wei W, Zhou X, Tang Z, Yu D, Wang E, Liu K, Ding F, Xu X 2022 Nano Lett. 22 4661Google Scholar

    [100]

    Zhang Z, Xu X, Qiu L, Wang S, Wu T, Ding F, Peng H, Liu K 2017 Adv. Sci. 4 1700087Google Scholar

    [101]

    Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966Google Scholar

    [102]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238Google Scholar

    [103]

    Xu X, Lin C, Fu R, Wang S, Pan R, Chen G, Shen Q, Liu C, Guo X, Wang Y, Zhao R, Liu K, Luo Z, Hu Z, Li H 2016 AIP Adv. 6 025026Google Scholar

    [104]

    Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y, Wang X 2022 Nature 605 69Google Scholar

    [105]

    Chen L, Liu B, Ge M, Ma Y, Abbas A N, Zhou C 2015 ACS Nano 9 8368Google Scholar

    [106]

    Deshpande S, Heo J, Das A, Bhattacharya P 2013 Nat. Commun. 4 1675Google Scholar

    [107]

    Kim I H, Park H S, Park Y J, Kim T 1998 Appl. Phys. Lett. 73 1634Google Scholar

    [108]

    Wang R, Koch N, Martin J, Sadofev S 2023 Phys. Status. Solidi-R 17 2200476Google Scholar

    [109]

    Zhang Z, Ding M, Cheng T, Qiao R, Zhao M, Luo M, Wang E, Sun Y, Zhang S, Li X, Zhang Z, Mao H, Liu F, Fu Y, Liu K, Zou D, Liu C, Wu M, Fan C, Zhu Q, Wang X, Gao P, Li Q, Liu K, Zhang Y, Bai X, Yu D, Ding F, Wang E, Liu K 2022 Nat. Nanotechnol. 17 1258Google Scholar

    [110]

    Lin Y C, Komsa H P, Yeh C H, Bjorkman T, Liang Z Y, Ho C H, Huang Y S, Chiu P W, Krasheninnikov A V, Suenaga K 2015 ACS Nano 9 11249Google Scholar

    [111]

    Jiang S, Hong M, Wei W, Zhao L, Zhang N, Zhang Z, Yang P, Gao N, Zhou X, Xie C 2018 Commun. Chem. 1 17Google Scholar

    [112]

    Wu K, Chen B, Yang S, Wang G, Kong W, Cai H, Aoki T, Soignard E, Marie X, Yano A 2016 Nano Lett. 16 5888Google Scholar

    [113]

    Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D 2017 Small 13 1604179Google Scholar

    [114]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R 2015 Science 350 1513Google Scholar

    [115]

    Wang X, He J, Zhou B, Zhang Y, Wu J, Hu R, Liu L, Song J, Qu J 2018 Angew. Chem. Ger. Edit 130 8804Google Scholar

    [116]

    Yuhara J, Shimazu H, Ito K, Ohta A, Araidai M, Kurosawa M, Nakatake M, Le Lay G 2018 ACS Nano 12 11632Google Scholar

    [117]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 1901017Google Scholar

    [118]

    Zhou J, Chen J, Chen M, Wang J, Liu X, Wei B, Wang Z, Li J, Gu L, Zhang Q 2019 Adv. Mater. 31 1807874Google Scholar

    [119]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [120]

    Yuan Q, Yakobson B I, Ding F 2014 J. Phys. Chem. Lett. 5 3093Google Scholar

    [121]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K 2017 J. Am. Chem. Soc. 139 482Google Scholar

    [122]

    Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W 2016 Small 12 3645Google Scholar

    [123]

    Wang S, Dearle A E, Maruyama M, Ogawa Y, Okada S, Hibino H, Taniyasu Y 2019 Adv. Mater. 31 1900880Google Scholar

    [124]

    Li P, Wei W, Zhang M, Mei Y, Chu P K, Xie X, Yuan Q, Di Z 2020 Nano Today 34 100908Google Scholar

    [125]

    Nie S, Wofford J M, Bartelt N C, Dubon O D, McCarty K F 2011 Phys. Rev. B 84 155425Google Scholar

    [126]

    Griep M H, Sandoz-Rosado E, Tumlin T M, Wetzel E 2016 Nano Lett. 16 1657Google Scholar

    [127]

    Dai J, Wang D, Zhang M, Niu T, Li A, Ye M, Qiao S, Ding G, Xie X, Wang Y 2016 Nano Lett. 16 3160Google Scholar

    [128]

    Driver S, Toomes R, Woodruff D 2016 Surf. Sci. 646 114Google Scholar

    [129]

    Bets K V, Gupta N, Yakobson B I 2019 Nano Lett. 19 2027Google Scholar

    [130]

    Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S, Li R, Chao T A, Chueh W C, Zhang Y 2020 Nature 579 219Google Scholar

    [131]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [132]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191Google Scholar

    [133]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312Google Scholar

    [134]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [135]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [136]

    Hou Y, Wang B, Zhan L, Qing F, Wang X, Niu X, Li X 2020 Mater. Today 36 10Google Scholar

    [137]

    Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S, Chen Y P 2011 Nat. Mater. 10 443Google Scholar

    [138]

    Wu M, Zhang Z, Xu X, Zhang Z, Duan Y, Dong J, Qiao R, You S, Wang L, Qi J, Zou D, Shang N, Yang Y, Li H, Zhu L, Sun J, Yu H, Gao P, Bai X, Jiang Y, Wang Z J, Ding F, Yu D, Wang E, Liu K 2020 Nature 581 406Google Scholar

    [139]

    Li Y, Sun L, Chang Z, Liu H, Wang Y, Liang Y, Chen B, Ding Q, Zhao Z, Wang R, Wei Y, Peng H, Lin L, Liu Z 2020 Adv. Mater. 32 2002034Google Scholar

    [140]

    Li L, Ma T, Yu W, Zhu M, Li J, Chen Z, Li H, Zhao M, Teng J, Tian B, Su C, Loh K P 2021 2D Mater. 8 035019Google Scholar

    [141]

    Wan Y, Fu J H, Chuu C P, Tung V, Shi Y, Li L J 2022 Chem. Soc. Rev. 51 803Google Scholar

    [142]

    Lee J H, Lee E K, Joo W J, Jang Y, Kim B S, Lim J Y, Choi S H, Ahn S J, Ahn J R, Park M H, Yang C W, Choi B L, Hwang S W, Whang D 2014 Science 344 286Google Scholar

    [143]

    Zhang Z, Penev E S, Yakobson B I 2016 Nat. Chem. 8 525Google Scholar

    [144]

    Sun X, Liu X, Yin J, Yu J, Li Y, Hang Y, Zhou X, Yu M, Li J, Tai G, Guo W 2017 Adv. Funct. Mater. 27 1603300Google Scholar

    [145]

    Liu Y, Penev E S, Yakobson B I 2013 Angew. Chem. Int. Edit. 52 3156Google Scholar

    [146]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [147]

    Kiraly B, Liu X, Wang L, Zhang Z, Mannix A J, Fisher B L, Yakobson B I, Hersam M C, Guisinger N P 2019 ACS Nano 13 3816Google Scholar

    [148]

    Liu H, Gao J, Zhao J 2013 Sci. Rep. -UK 3 3238Google Scholar

    [149]

    Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P, Wu K 2018 Sci. Bull. 63 282Google Scholar

    [150]

    Zhong Q, Kong L, Gou J, Li W, Sheng S, Yang S, Cheng P, Li H, Wu K, Chen L 2017 Phys. Rev. Mater. 1 021001Google Scholar

    [151]

    Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A 2019 Nat. Nanotechnol. 14 44Google Scholar

    [152]

    Wu R, Eltinge S, Drozdov I K, Gozar A, Zahl P, Sadowski J T, Ismail-Beigi S, Božović I 2022 Nat. Chem. 14 377Google Scholar

    [153]

    Yang W, Berthou S, Lu X, Wilmart Q, Denis A, Rosticher M, Taniguchi T, Watanabe K, Fève G, Berroir J M, Zhang G, Voisin C, Baudin E, Plaçais B 2018 Nat. Nanotechnol. 13 47Google Scholar

    [154]

    Yankowitz M, Ma Q, Jarillo-Herrero P, LeRoy B J 2019 Nat. Rev. Phys. 1 112Google Scholar

    [155]

    Hu S, Lozada-Hidalgo M, Wang F, Mishchenko A, Schedin F, Nair R R, Hill E, Boukhvalov D, Katsnelson M, Dryfe R A 2014 Nature 516 227Google Scholar

    [156]

    Wang L, Meric I, Huang P, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D 2013 Science 342 614Google Scholar

    [157]

    Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F, Xie X, Jiang M 2015 Nat. Commun. 6 6160Google Scholar

    [158]

    Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A-P, Gu G 2014 Science 343 163Google Scholar

    [159]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [160]

    Ma K Y, Zhang L, Jin S, Wang Y, Yoon S I, Hwang H, Oh J, Jeong D S, Wang M, Chatterjee S, Kim G, Jang A R, Yang J, Ryu S, Jeong H Y, Ruoff R S, Chhowalla M, Ding F, Shin H S 2022 Nature 606 88Google Scholar

    [161]

    Liu Z, Gong Y, Zhou W, Ma L, Yu J, Idrobo J C, Jung J, MacDonald A H, Vajtai R, Lou J, Ajayan P M 2013 Nat. Commun. 4 2541Google Scholar

    [162]

    Caneva S, Weatherup R S, Bayer B C, Blume R, Cabrero-Vilatela A, Braeuninger-Weimer P, Martin M-B, Wang R, Baehtz C, Schloegl R, Meyer J C, Hofmann S 2016 Nano Lett. 16 1250Google Scholar

    [163]

    Liu D, Chen X, Yan Y, Zhang Z, Jin Z, Yi K, Zhang C, Zheng Y, Wang Y, Yang J, Xu X, Chen J, Lu Y, Wei D, Wee A T S, Wei D 2019 Nat. Commun. 10 1188Google Scholar

    [164]

    Jang A R, Hong S, Hyun C, Yoon S I, Kim G, Jeong H Y, Shin T J, Park S O, Wong K, Kwak S K, Park N, Yu K, Choi E, Mishchenko A, Withers F, Novoselov K S, Lim H, Shin H S 2016 Nano Lett. 16 3360Google Scholar

    [165]

    Biswas A, Ruan Q, Lee F, Li C, Iyengar S A, Puthirath A B, Zhang X, Kannan H, Gray T, Birdwell A G, Neupane M R, Shah P B, Ruzmetov D A, Ivanov T G, Vajtai R, Tripathi M, Dalton A, Yakobson B I, Ajayan P M 2023 Appl. Mater. Today 30 101734Google Scholar

    [166]

    Lee Y H, Yu L, Wang H, Fang W, Ling X, Shi Y, Lin C T, Huang J K, Chang M T, Chang C S 2013 Nano Lett. 13 1852Google Scholar

    [167]

    Zhang Y, Zhang Y, Ji Q, Ju J, Yuan H, Shi J, Gao T, Ma D, Liu M, Chen Y 2013 ACS Nano 7 8963Google Scholar

    [168]

    Van Der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [169]

    Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J-C, Ajayan P M, Lou J 2013 Nat. Mater. 12 754Google Scholar

    [170]

    Yang P, Zhang S, Pan S, Tang B, Liang Y, Zhao X, Zhang Z, Shi J, Huan Y, Shi Y, Pennycook S J, Ren Z, Zhang G, Chen Q, Zou X, Liu Z, Zhang Y 2020 ACS Nano 14 5036Google Scholar

    [171]

    Hu J, Quan W, Yang P, Cui F, Liu F, Zhu L, Pan S, Huan Y, Zhou F, Fu J, Zhang G, Gao P, Zhang Y 2023 ACS Nano 17 312Google Scholar

    [172]

    Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X, Zhang Y 2022 Nat. Commun. 13 3238Google Scholar

    [173]

    Aljarb A, Fu J H, Hsu C C, Chuu C P, Wan Y, Hakami M, Naphade D R, Yengel E, Lee C J, Brems S, Chen T A, Li M Y, Bae S H, Hsu W T, Cao Z, Albaridy R, Lopatin S, Chang W H, Anthopoulos T D, Kim J, Li L J, Tung V 2020 Nat. Mater. 19 1300Google Scholar

    [174]

    Aljarb A, Cao Z, Tang H L, Huang J K, Li M, Hu W, Cavallo L, Li L J 2017 ACS Nano 11 9215Google Scholar

    [175]

    Wang J, Xu X, Cheng T, Gu L, Qiao R, Liang Z, Ding D, Hong H, Zheng P, Zhang Z, Zhang Z, Zhang S, Cui G, Chang C, Huang C, Qi J, Liang J, Liu C, Zuo Y, Xue G, Fang X, Tian J, Wu M, Guo Y, Yao Z, Jiao Q, Liu L, Gao P, Li Q, Yang R, Zhang G, Tang Z, Yu D, Wang E, Lu J, Zhao Y, Wu S, Ding F, Liu K 2022 Nat. Nanotechnol. 17 33Google Scholar

    [176]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G 2018 Nat. Nanotechnol. 13 246Google Scholar

    [177]

    Dumcenco D, Ovchinnikov D, Marinov K, Lazić P, Gibertini M, Marzari N, Sanchez O L, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta i Morral A, Radenovic A, Kis A 2015 ACS Nano 9 4611Google Scholar

    [178]

    Li N, Wang Q, Shen C, Wei Z, Yu H, Zhao J, Lu X, Wang G, He C, Xie L, Zhu J, Du L, Yang R, Shi D, Zhang G 2020 Nat. Electron. 3 711Google Scholar

    [179]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [180]

    Yin J, Liu X, Lu W, Li J, Cao Y, Li Y, Xu Y, Li X, Zhou J, Jin C, Guo W 2015 Small 11 5375Google Scholar

    [181]

    Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14 592Google Scholar

    [182]

    Ma Z, Wang S, Deng Q, Hou Z, Zhou X, Li X, Cui F, Si H, Zhai T, Xu H 2020 Small 16 2000596Google Scholar

    [183]

    Chubarov M, Choudhury T H, Hickey D R, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing J M 2021 ACS Nano 15 2532Google Scholar

    [184]

    Choi S H, Kim H J, Song B, Kim Y I, Han G, Nguyen H T T, Ko H, Boandoh S, Choi J H, Oh C S, Cho H J, Jin J W, Won Y S, Lee B H, Yun S J, Shin B G, Jeong H Y, Kim Y M, Han Y K, Lee Y H, Kim S M, Kim K K 2021 Adv. Mater. 33 2006601Google Scholar

    [185]

    Li J, Wang S, Jiang Q, Qian H, Hu S, Kang H, Chen C, Zhan X, Yu A, Zhao S, Zhang Y, Chen Z, Sui Y, Qiao S, Yu G, Peng S, Jin Z, Liu X 2021 Small 17 2100743Google Scholar

    [186]

    Yu H, Liao M, Zhao W, Liu G, Zhou X J, Wei Z, Xu X, Liu K, Hu Z, Deng K, Zhou S, Shi J-A, Gu L, Shen C, Zhang T, Du L, Xie L, Zhu J, Chen W, Yang R, Shi D, Zhang G 2017 ACS Nano 11 12001Google Scholar

    [187]

    Grønborg S S, Ulstrup S, Bianchi M, Dendzik M, Sanders C E, Lauritsen J V, Hofmann P, Miwa J A 2015 Langmuir 31 9700Google Scholar

    [188]

    Pan S, Yang P, Zhu L, Hong M, Xie C, Zhou F, Shi Y, Huan Y, Cui F, Zhang Y 2021 Nanotechnology 32 095601Google Scholar

    [189]

    Tumino F, Grazianetti C, Martella C, Ruggeri M, Russo V, Li Bassi A, Molle A, Casari C S 2021 J. Phys. Chem. C 125 9479Google Scholar

    [190]

    Tay R Y, Park H J, Ryu G H, Tan D, Tsang S H, Li H, Liu W, Teo E H T, Lee Z, Lifshitz Y, Ruoff R S 2016 Nanoscale 8 2434Google Scholar

    [191]

    Uchida Y, Iwaizako T, Mizuno S, Tsuji M, Ago H 2017 Phys. Chem. Chem. Phys. 19 8230Google Scholar

    [192]

    Taslim A B, Nakajima H, Lin Y C, Uchida Y, Kawahara K, Okazaki T, Suenaga K, Hibino H, Ago H 2019 Nanoscale 11 14668Google Scholar

    [193]

    Butashin A V, Vlasov V P, Kanevskii V M, Muslimov A E, Fedorov V A 2012 Crystallogr. Rep.+ 57 824Google Scholar

    [194]

    Zhang X, Nan H, Xiao S, Wan X, Gu X, Du A, Ni Z, Ostrikov K 2019 Nat. Commun. 10 598Google Scholar

    [195]

    Li X, Shi X, Marian D, Soriano D, Cusati T, Iannaccone G, Fiori G, Guo Q, Zhao W, Wu Y 2023 Sci. Adv. 9 eade5706Google Scholar

    [196]

    Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J, Zhu X Y 2020 Science 367 903Google Scholar

    [197]

    Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P 2022 Nat. Chem. 14 25Google Scholar

    [198]

    Zhang X, Huangfu L, Gu Z, Xiao S, Zhou J, Nan H, Gu X, Ostrikov K 2021 Small 17 2007312Google Scholar

  • [1] 李建军, 崔屿峥, 付聪乐, 秦晓伟, 李雨畅, 邓军. 具有多MO喷嘴垂直MOCVD反应腔外延层厚度均匀性的优化理论及应用. 物理学报, 2024, 73(4): 046801. doi: 10.7498/aps.73.20231555
    [2] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [3] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析. 物理学报, 2015, 64(13): 138103. doi: 10.7498/aps.64.138103
    [4] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [5] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [6] 乌晓燕, 孔明, 李戈扬, 赵文济. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应. 物理学报, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [7] 张营堂, 何萌, 陈子瑜, 吕惠宾. 用激光分子束外延在玻璃衬底上生长La0.67Sr0.33MnO3薄膜. 物理学报, 2009, 58(3): 2002-2004. doi: 10.7498/aps.58.2002
    [8] 喻利花, 董师润, 许俊华, 李戈扬. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究. 物理学报, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [9] 宋禹忻, 俞重远, 刘玉敏. 沉积速率和生长停顿对InAs/GaAs量子点超晶格生长影响的综合分析. 物理学报, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [10] 何 萌, 刘国珍, 仇 杰, 邢 杰, 吕惠宾. 用激光分子束外延在Si衬底上外延生长高质量的TiN薄膜. 物理学报, 2008, 57(2): 1236-1240. doi: 10.7498/aps.57.1236
    [11] 李美亚, 汪 晶, 刘 军, 于本方, 郭冬云, 赵兴中. YBa2Cu3O7-x涂层导体的外延生长和性能对CeO2缓冲层的依赖性. 物理学报, 2008, 57(5): 3132-3137. doi: 10.7498/aps.57.3132
    [12] 喻利花, 董松涛, 董师润, 许俊华. AlN/Si3N4纳米多层膜的外延生长与力学性能. 物理学报, 2008, 57(8): 5151-5158. doi: 10.7498/aps.57.5151
    [13] 赵文济, 董云杉, 岳建岭, 李戈扬. Si3N4的晶体化和ZrN/Si3N4纳米多层膜的超硬效应. 物理学报, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [14] 刘 艳, 董云杉, 岳建岭, 李戈扬. 反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应. 物理学报, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [15] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [16] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [17] 魏 仑, 梅芳华, 邵 楠, 李戈扬, 李建国. TiN/SiO2纳米多层膜的晶体生长与超硬效应. 物理学报, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
    [18] 劳技军, 孔 明, 张惠娟, 李戈扬. TiN/SiC纳米多层膜的生长结构与力学性能. 物理学报, 2004, 53(6): 1961-1966. doi: 10.7498/aps.53.1961
    [19] 王剑屏, 郝跃, 彭军, 朱作云, 张永华. 蓝宝石衬底上异质外延生长碳化硅薄膜的研究. 物理学报, 2002, 51(8): 1793-1797. doi: 10.7498/aps.51.1793
    [20] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
计量
  • 文章访问数:  4846
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-06-29
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-10-20

/

返回文章
返回