搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

从“魔角”石墨烯到摩尔超晶格量子模拟器

季怡汝 褚衍邦 冼乐德 杨威 张广宇

引用本文:
Citation:

从“魔角”石墨烯到摩尔超晶格量子模拟器

季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇

From magic angle twisted bilayer graphene to moiré superlattice quantum simulator

Ji Yi-Ru, Chu Yan-Bang, Xian Le-De, Yang Wei, Zhang Guang-Yu
PDF
HTML
导出引用
  • 自从魔角石墨烯在实验上被证实以来, 转角摩尔超晶格体系中存在的关联绝缘态和超导态吸引了大批科学家的目光, 并发展出了一门新的科学分支—转角电子学. 本文主要综述了最近转角摩尔超晶格体系在实验上的发展, 包括转角双层石墨烯(TBG)、转角双层-双层石墨烯(TDBG)以及其他二维摩尔超晶格体系, 并简单介绍了摩尔超晶格量子模拟器的概念. 其中实验里浮现的关联绝缘态、超导态、以及铁磁态几乎囊括了近代凝聚态物理的几大热门话题, 同时, 逐步发展的二维摩尔超晶格量子模拟器研究也似乎有可能为强关联量子多体体系寻找一个突破口.
    Since the correlated insulating states and superconductivity in magic angle twisted bilayer graphene were discovered, the twisted moiré superlattice has attracted a wide range of research interest, and even has brought a new field, “twistronics”, into being. In this review, we first give a history of experimentally discovering magic angle graphene and flat band, and then summarize the recent developments of twisted moiré superlattice, including twisted graphene systems and TMDCs, and finally introduce a notion of moiré superlattice quantum simulator.
      通信作者: 冼乐德, xianlede@sslab.org.cn ; 杨威, wei.yang@iphy.ac.cn
      作者简介:
      冼乐德, 松山湖材料实验室二维超晶格模拟与计算团队负责人, 特聘研究员. 2014年博士毕业于美国佐治亚理工大学物理系, 2014—2020年先后在西班牙巴斯克大学、德国马普物质结构与动力学研究所从事博士后研究, 曾获欧盟玛丽居里学者奖学金. 主要从事对新型二维材料的计算模拟研究工作, 在单质二维材料的生长, 结构分析与预测, 以及探索新型转角体系中对二维材料量子物性的调控等方面做出了一系列重要的理论研究, 论文发表在Nature, Nature Physics, Nature Materials, Nature Communications, Nano Letters, Physical Review Letters 等学术期刊, 引用超过2600次. 近期的研究主要注重在转角二维材料的理论计算模拟方面
      杨威, 中国科学院物理研究所特聘研究员. 2009年山东大学物理系获学士学位, 2014年中国科学院物理研究所获博士学位, 并荣获中国科学院院长特别奖. 先后赴法国巴黎高等师范学校(ENS)和西班牙光子科学研究所(ICFO)做博士后研究, 于2019年回国加入中国科学院物理研究所. 长期从事低维体系量子输运研究, 发展了多种极低温高频噪音测量技术, 在二维摩尔超晶格、量子霍尔效应、高频热输运、一维量子输运等方向取得了多项重要原创性研究成果, 发表在NatureNature子刊、PRL等国际一流刊物上, 谷歌学术被引3200余次. 担任2D Materials “转角电子学”专刊的客座编辑, 主持基金委面上项目、科技部重点研发计划等
    • 基金项目: 国家重点基础研究发展计划(批准号: 2020YFA0309600)、国家自然科学基金(批准号: 11834017, 61888102, 12074413)和中国科学院战略性先导科技专项B (批准号: XDB30000000, XDB33000000)资助的课题
      Corresponding author: Xian Le-De, xianlede@sslab.org.cn ; Yang Wei, wei.yang@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2020YFA0309600), the National Natural Science Foundation of China (Grant Nos. 11834017, 61888102, 12074413), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB30000000, XDB33000000)
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Beenakker C, van Houten H 1991 Solid State Phys. (Amsterdam: Elsevier) pp1−228

    [3]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [6]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [7]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar

    [8]

    Schmidt H, Rode J C, Smirnov D, Haug R J 2014 Nat. Commun. 5 5742Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K 2016 Nano Lett. 16 2387Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [12]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [15]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nat. Commun. 9 5387Google Scholar

    [16]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [17]

    Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J, Dean C R 2015 Science 350 1231Google Scholar

    [18]

    Wang D, Chen G, Li C, Cheng M, Yang W, Wu S, Xie G, Zhang J, Zhao J, Lu X, Chen P, Wang G, Meng J, Tang J, Yang R, He C, Liu D, Shi D, Watanabe K, Taniguchi T, Feng J, Zhang Y, Zhang G 2016 Phys. Rev. Lett. 116 126101Google Scholar

    [19]

    Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A, Shalom M B, Morozov S, Van Wijk M, Fasolino A, Katsnelson M I, Watanabe K, Taniguchi T, Geim A K, Mishchenko A, Novoselov K S 2016 Nat. Commun. 7 10800Google Scholar

    [20]

    Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A, Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 076601Google Scholar

    [21]

    Kim Y, Herlinger P, Moon P, Koshino M, Taniguchi T, Watanabe K, Smet J H 2016 Nano Lett. 16 5053Google Scholar

    [22]

    Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804Google Scholar

    [23]

    Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H, Tutuc E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 3364Google Scholar

    [24]

    Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K S, Geim A K, Andrei E 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [25]

    Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [26]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [27]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [28]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [29]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [30]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [31]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [32]

    Bruin J A N, Sakai H, Perry R S, Mackenzie A P 2013 Science 339 804Google Scholar

    [33]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [34]

    Wu F, Hwang E, Das Sarma S 2019 Phys. Rev. B 99 165112Google Scholar

    [35]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [36]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [37]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [38]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys.

    [39]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [40]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [41]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301

    [42]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [43]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [44]

    Chen G, Sharpe A L, Fox E J, Zhang Y-H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [45]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [46]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [47]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [48]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [49]

    Adak P C, Sinha S, Ghorai U, Sangani L D V, Watanabe K, Taniguchi T, Sensarma R, Deshmukh M M 2020 Phys. Rev. B 101 125428Google Scholar

    [50]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [51]

    de Vries F K, Zhu J, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ensslin K 2020 Phys. Rev. Lett. 125 176801Google Scholar

    [52]

    Rickhaus P, de Vries F, Zhu J, Portolés E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Wantanabe K, MacDonald A H, Ihn T, Ensslin K 2020 arXiv preprint arXiv: 2005.05373

    [53]

    Chen S, He M, Zhang Y-H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [54]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [55]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [56]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [57]

    Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [58]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [59]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [60]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [61]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [62]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [63]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [64]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [65]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [66]

    Liu J P, Liu J W, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [67]

    Liu J P, Ma Z, Gao J H, Dai X 2019 Phys. Rev. X 9 031021

    [68]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [69]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [70]

    Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M, Rubio A 2019 Nano Lett. 19 4934Google Scholar

    [71]

    Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, Rubio A 2020 arXiv preprint arXiv: 2004.02964

    [72]

    Kennes D M, Xian L, Claassen M, Rubio A 2020 Nat. Commun. 11 1

    [73]

    Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D, Pasupathy A N, Rubio A 2021 Nat. Phys. 17 155Google Scholar

    [74]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [75]

    Stewart G 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [76]

    Deng B, Wang B, Li N, Li R, Wang Y, Tang J, Fu Q, Tian Z, Gao P, Xue J, Hailin P 2020 ACS Nano 14 1656Google Scholar

    [77]

    Pezzini S, Miseikis V, Piccinini G, Forti S, Pace S, Engelke R, Rossella F, Watanabe K, Taniguchi T, Kim P, Coletti C 2020 Nano Lett. 20 3313Google Scholar

    [78]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [79]

    Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J, Zhou S 2018 Proc. Natl. Acad. Sci. U.S.A. 115 6928Google Scholar

    [80]

    Kerelsky A, Rubio-Verdú C, Xian L, Kennes D M, Halbertal D, Finney N, Song L, Turkel S, Wang L, Watanabe K, Taniguchi T, Hone J, Dean C, Basov D N, Rubio A, N. P A 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2017366118Google Scholar

    [81]

    Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Kumar R K, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M, Geim A K 2019 Nat. Commun. 10 4008Google Scholar

    [82]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [83]

    Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [84]

    Hu G, Krasnok A, Mazor Y, Qiu C W, Alu A 2020 Nano Lett. 20 3217Google Scholar

    [85]

    Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, Krasnok A, Mazor Y, Zhang Q, Bao Q, Qiu C W, Alù A 2020 Nature 582 209Google Scholar

    [86]

    Renuka M, Lin X, Wang Z, Shen L, Zheng B, Wang H, Hongsheng C 2018 Opt. Lett. 43 5737Google Scholar

    [87]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013

    [88]

    Park M J, Kim Y, Cho G Y, Lee S 2019 Phys. Rev. Lett. 123 216803Google Scholar

    [89]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [90]

    Zarenia M, Yudishtira I, Adam S, Vignale G 2020 Phys. Rev. B 101 045421Google Scholar

    [91]

    Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402Google Scholar

  • 图 1  “魔角”石墨烯 (a) 摩尔超晶格和摩尔布里渊区示意图[12]; (b) 能带图[13]; (c) 半填充的莫特绝缘态和拱形的超导态[13]; (d) 3/4填充处的量子反常霍尔效应[36]

    Fig. 1.  Magic angle twisted bilayer graphene: (a) Moiré pattern and the mini Brillouin zone[12]; (b) band energy E of TBG at $ \theta ={1.05}^{\circ } $[13]; (c) phase diagram with mott insulating states at half filling and gate-tunable superconductivity domes nearby[13]; (d) quantum anomalous Hall effect near 3/4 filling and schematic band structure at full filling ($ \nu =4 $) and 3/4 filling ($ \nu =3 $)[36].

    图 2  电场可调的多层石墨烯转角体系 (a) ABC堆垛的三层石墨烯/氮化硼摩尔超晶格中关联绝缘态和超导态[43]; (b) 转角双层-双层石墨烯(TDBG, 2+2)中的关联绝缘态[45]; (c) 转角单层-双层石墨烯(TMBG, 1+2)中的关联绝缘态[54]; (d) 转角三层石墨烯体系(MATTG, 1+1+1)中的超导态[56]

    Fig. 2.  Field tunable multilayer graphene twisted moiré superlattice systems: (a) Signatures of Mott insulator and the superconducting (SC) phase in ABC-trilayer graphene/hBN superlattice[43]; (b) correlated insulating states in twisted double bilayer graphene (TDBG)[45]; (c) correlated insulating states in twisted monolayer-bilayer graphene (TMBG)[54]; (d) MATTG phase diagrams, and the superconductivity is colored in blue[56].

    图 3  转角过渡金属硫化物的关联效应 (a) WSe2/WS2异质摩尔超晶格半填充处的莫特绝缘态和不同填充处下的磁化率$ \chi \propto g-{g}_{0} $, 和Weiss常数$ \theta $[60]; (b) WSe2/WS2质摩尔超晶格分数填充处的关联绝缘态[69]; (c) WSe2/WSe2同质摩尔超晶格的关联绝缘态[58]

    Fig. 3.  Correlated insulating states in twisted TMD superlattice: (a) Signature of correlated insulator at half filling in WSe2/WS2 moiré superlattice[60]; (b) fractional insulating states in WSe2/WS2 moiré superlattice[69]; (c) transport signature of half filling insulator in twisted WSe2/WSe2 moiré superlattice[58].

  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Beenakker C, van Houten H 1991 Solid State Phys. (Amsterdam: Elsevier) pp1−228

    [3]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy B J 2012 Nat. Phys. 8 382Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J, Kim P 2013 Nature 497 598Google Scholar

    [5]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [6]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594Google Scholar

    [7]

    Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y, Zhang G 2013 Nat. Mater. 12 792Google Scholar

    [8]

    Schmidt H, Rode J C, Smirnov D, Haug R J 2014 Nat. Commun. 5 5742Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K 2016 Nano Lett. 16 2387Google Scholar

    [11]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. U.S.A. 108 12233Google Scholar

    [12]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989Google Scholar

    [15]

    Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C, Lombardo A 2018 Nat. Commun. 9 5387Google Scholar

    [16]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [17]

    Wang L, Gao Y, Wen B, Han Z, Taniguchi T, Watanabe K, Koshino M, Hone J, Dean C R 2015 Science 350 1231Google Scholar

    [18]

    Wang D, Chen G, Li C, Cheng M, Yang W, Wu S, Xie G, Zhang J, Zhao J, Lu X, Chen P, Wang G, Meng J, Tang J, Yang R, He C, Liu D, Shi D, Watanabe K, Taniguchi T, Feng J, Zhang Y, Zhang G 2016 Phys. Rev. Lett. 116 126101Google Scholar

    [19]

    Woods C, Withers F, Zhu M, Cao Y, Yu G, Kozikov A, Shalom M B, Morozov S, Van Wijk M, Fasolino A, Katsnelson M I, Watanabe K, Taniguchi T, Geim A K, Mishchenko A, Novoselov K S 2016 Nat. Commun. 7 10800Google Scholar

    [20]

    Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A, Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 076601Google Scholar

    [21]

    Kim Y, Herlinger P, Moon P, Koshino M, Taniguchi T, Watanabe K, Smet J H 2016 Nano Lett. 16 5053Google Scholar

    [22]

    Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804Google Scholar

    [23]

    Kim K, DaSilva A, Huang S, Fallahazad B, Larentis S, Taniguchi T, Watanabe K, LeRoy B J, MacDonald A H, Tutuc E 2017 Proc. Natl. Acad. Sci. U.S.A. 114 3364Google Scholar

    [24]

    Luican A, Li G, Reina A, Kong J, Nair R, Novoselov K S, Geim A K, Andrei E 2011 Phys. Rev. Lett. 106 126802Google Scholar

    [25]

    Yin L J, Qiao J B, Wang W X, Zuo W J, Yan W, Xu R, Dou R F, Nie J C, He L 2015 Phys. Rev. B 92 201408Google Scholar

    [26]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [27]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [28]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [29]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [30]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J 2021 Science 371 1261Google Scholar

    [31]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [32]

    Bruin J A N, Sakai H, Perry R S, Mackenzie A P 2013 Science 339 804Google Scholar

    [33]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [34]

    Wu F, Hwang E, Das Sarma S 2019 Phys. Rev. B 99 165112Google Scholar

    [35]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [36]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [37]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [38]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys.

    [39]

    Wu S, Zhang Z, Watanabe K, Taniguchi T, Andrei E Y 2021 Nat. Mater. 20 488Google Scholar

    [40]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [41]

    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, Zhang G 2021 Chin. Phys. Lett. 38 047301

    [42]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [43]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [44]

    Chen G, Sharpe A L, Fox E J, Zhang Y-H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [45]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [46]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [47]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [48]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [49]

    Adak P C, Sinha S, Ghorai U, Sangani L D V, Watanabe K, Taniguchi T, Sensarma R, Deshmukh M M 2020 Phys. Rev. B 101 125428Google Scholar

    [50]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [51]

    de Vries F K, Zhu J, Portoles E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald A H, Ensslin K 2020 Phys. Rev. Lett. 125 176801Google Scholar

    [52]

    Rickhaus P, de Vries F, Zhu J, Portolés E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Wantanabe K, MacDonald A H, Ihn T, Ensslin K 2020 arXiv preprint arXiv: 2005.05373

    [53]

    Chen S, He M, Zhang Y-H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [54]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [55]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [56]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [57]

    Hao Z, Zimmerman A, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [58]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [59]

    Regan E C, Wang D, Jin C, Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlstrom J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [60]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [61]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [62]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [63]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [64]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [65]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [66]

    Liu J P, Liu J W, Dai X 2019 Phys. Rev. B 99 155415Google Scholar

    [67]

    Liu J P, Ma Z, Gao J H, Dai X 2019 Phys. Rev. X 9 031021

    [68]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [69]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [70]

    Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M, Rubio A 2019 Nano Lett. 19 4934Google Scholar

    [71]

    Xian L, Claassen M, Kiese D, Scherer M M, Trebst S, Kennes D M, Rubio A 2020 arXiv preprint arXiv: 2004.02964

    [72]

    Kennes D M, Xian L, Claassen M, Rubio A 2020 Nat. Commun. 11 1

    [73]

    Kennes D M, Claassen M, Xian L, Georges A, Millis A J, Hone J, Dean C R, Basov D, Pasupathy A N, Rubio A 2021 Nat. Phys. 17 155Google Scholar

    [74]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17Google Scholar

    [75]

    Stewart G 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [76]

    Deng B, Wang B, Li N, Li R, Wang Y, Tang J, Fu Q, Tian Z, Gao P, Xue J, Hailin P 2020 ACS Nano 14 1656Google Scholar

    [77]

    Pezzini S, Miseikis V, Piccinini G, Forti S, Pace S, Engelke R, Rossella F, Watanabe K, Taniguchi T, Kim P, Coletti C 2020 Nano Lett. 20 3313Google Scholar

    [78]

    Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W, Ahn J R 2018 Science 361 782Google Scholar

    [79]

    Yao W, Wang E, Bao C, Zhang Y, Zhang K, Bao K, Chan C K, Chen C, Avila J, Asensio M C, Zhu J, Zhou S 2018 Proc. Natl. Acad. Sci. U.S.A. 115 6928Google Scholar

    [80]

    Kerelsky A, Rubio-Verdú C, Xian L, Kennes D M, Halbertal D, Finney N, Song L, Turkel S, Wang L, Watanabe K, Taniguchi T, Hone J, Dean C, Basov D N, Rubio A, N. P A 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2017366118Google Scholar

    [81]

    Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Kumar R K, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M, Geim A K 2019 Nat. Commun. 10 4008Google Scholar

    [82]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hoyden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [83]

    Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T, Ensslin K 2019 Nano Lett. 19 8821Google Scholar

    [84]

    Hu G, Krasnok A, Mazor Y, Qiu C W, Alu A 2020 Nano Lett. 20 3217Google Scholar

    [85]

    Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, Krasnok A, Mazor Y, Zhang Q, Bao Q, Qiu C W, Alù A 2020 Nature 582 209Google Scholar

    [86]

    Renuka M, Lin X, Wang Z, Shen L, Zheng B, Wang H, Hongsheng C 2018 Opt. Lett. 43 5737Google Scholar

    [87]

    Ahn J, Park S, Yang B J 2019 Phys. Rev. X 9 021013

    [88]

    Park M J, Kim Y, Cho G Y, Lee S 2019 Phys. Rev. Lett. 123 216803Google Scholar

    [89]

    Po H C, Zou L, Senthil T, Vishwanath A 2019 Phys. Rev. B 99 195455Google Scholar

    [90]

    Zarenia M, Yudishtira I, Adam S, Vignale G 2020 Phys. Rev. B 101 045421Google Scholar

    [91]

    Lian B, Liu Z, Zhang Y, Wang J 2020 Phys. Rev. Lett. 124 126402Google Scholar

  • [1] 吴帆帆, 季怡汝, 杨威(Wei Yang), 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20220015
    [2] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [3] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [4] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [5] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [6] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [7] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [8] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算. 物理学报, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [9] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [10] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [11] 姚仲瑜, 傅军, 龚少华, 张月胜, 姚凯伦. 晶格各向同性应变对闪锌矿结构CrS和CrSe的半金属性和磁性的影响. 物理学报, 2011, 60(12): 127103. doi: 10.7498/aps.60.127103
    [12] 李仁全, 潘春玲, 文玉华, 朱梓忠. Ag原子链的结构稳定性和磁性. 物理学报, 2009, 58(4): 2752-2756. doi: 10.7498/aps.58.2752
    [13] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解. 物理学报, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [14] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究. 物理学报, 2006, 55(12): 6580-6584. doi: 10.7498/aps.55.6580
    [15] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [16] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [17] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
    [18] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究. 物理学报, 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [19] 李 勇, 闻 平, 刘振兴, 景秀年, 王万录, 白海洋. 块体金属玻璃Zr46.75Ti8.25Cu7.5Ni10Be27.5的超导与负电阻温度系数. 物理学报, 2004, 53(3): 844-849. doi: 10.7498/aps.53.844
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  3586
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-03-28
  • 上网日期:  2021-05-31
  • 刊出日期:  2021-06-05

从“魔角”石墨烯到摩尔超晶格量子模拟器

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190
  • 2. 中国科学院大学物理科学学院, 北京 100049
  • 3. 纳米材料与器件物理北京市重点实验室, 北京 100190
  • 4. 松山湖材料实验室, 东莞 523808
  • 通信作者: 冼乐德, xianlede@sslab.org.cn ; 杨威, wei.yang@iphy.ac.cn
    作者简介:
    冼乐德, 松山湖材料实验室二维超晶格模拟与计算团队负责人, 特聘研究员. 2014年博士毕业于美国佐治亚理工大学物理系, 2014—2020年先后在西班牙巴斯克大学、德国马普物质结构与动力学研究所从事博士后研究, 曾获欧盟玛丽居里学者奖学金. 主要从事对新型二维材料的计算模拟研究工作, 在单质二维材料的生长, 结构分析与预测, 以及探索新型转角体系中对二维材料量子物性的调控等方面做出了一系列重要的理论研究, 论文发表在Nature, Nature Physics, Nature Materials, Nature Communications, Nano Letters, Physical Review Letters 等学术期刊, 引用超过2600次. 近期的研究主要注重在转角二维材料的理论计算模拟方面
    杨威, 中国科学院物理研究所特聘研究员. 2009年山东大学物理系获学士学位, 2014年中国科学院物理研究所获博士学位, 并荣获中国科学院院长特别奖. 先后赴法国巴黎高等师范学校(ENS)和西班牙光子科学研究所(ICFO)做博士后研究, 于2019年回国加入中国科学院物理研究所. 长期从事低维体系量子输运研究, 发展了多种极低温高频噪音测量技术, 在二维摩尔超晶格、量子霍尔效应、高频热输运、一维量子输运等方向取得了多项重要原创性研究成果, 发表在NatureNature子刊、PRL等国际一流刊物上, 谷歌学术被引3200余次. 担任2D Materials “转角电子学”专刊的客座编辑, 主持基金委面上项目、科技部重点研发计划等
    基金项目: 国家重点基础研究发展计划(批准号: 2020YFA0309600)、国家自然科学基金(批准号: 11834017, 61888102, 12074413)和中国科学院战略性先导科技专项B (批准号: XDB30000000, XDB33000000)资助的课题

摘要: 自从魔角石墨烯在实验上被证实以来, 转角摩尔超晶格体系中存在的关联绝缘态和超导态吸引了大批科学家的目光, 并发展出了一门新的科学分支—转角电子学. 本文主要综述了最近转角摩尔超晶格体系在实验上的发展, 包括转角双层石墨烯(TBG)、转角双层-双层石墨烯(TDBG)以及其他二维摩尔超晶格体系, 并简单介绍了摩尔超晶格量子模拟器的概念. 其中实验里浮现的关联绝缘态、超导态、以及铁磁态几乎囊括了近代凝聚态物理的几大热门话题, 同时, 逐步发展的二维摩尔超晶格量子模拟器研究也似乎有可能为强关联量子多体体系寻找一个突破口.

English Abstract

    • “More is different”, 安德森的这篇文章开创了凝聚态物理的时代. 物理系统的复杂性不断增加会伴随着新的物理性质出现, 而这些新的物理并不能从简单的系统中推导出来, 而是需要新的解释、新的理论. 因此, 凝聚态物理中各种复杂的量子多体系统也成为了最让物理学家们着迷的领域. 随着体系复杂度的增加, 无法再用最基本简单的物理定律推导出现有的复杂体系, 于是如何描述量子多体系统成为了凝聚态物理的一个难点. 1982年, Richard Ferman[1]提出了量子模拟器的概念, 主要观点是通过一个相对简单、容易操控和调节参数的体系, 来模拟复杂的量子多体系统, 然后通过这个调节参数模拟的过程, 获得对复杂量子多体关联效应的深入认识. 最早开始研究的有基于超冷原子、离子阱、超导量子点等建立的量子模拟器. 最近几年, 摩尔超晶格系统的量子模拟器逐渐崭露头角, 尽管它的研究处于非常初期, 能模拟的量子体系也较少, 但比起其他系统, 基于摩尔超晶格系统的量子模拟器可以模拟体系在较大的温度区间和态密度区间的变化现象以及相应的相图, 并且该量子模拟器自身就是一个真实的凝聚态体系, 为模拟研究凝聚态体系的强关联现象、发掘和调控凝聚态体系中新颖的电子关联效应提供了一个崭新的平台.

      虽然理论上摩尔超晶格系统的构建十分优美, 但是在实验上却是困难重重. 起初, 人们尝试在简单的晶格周期势中添加超晶格的周期势能, 形成子能带. 而传统人工超晶格体系的构建虽然很好地引入了超晶格的周期, 但同时也带来了样品的不均匀性和不够理想的输运性质[2]. 后来随着实验技术的进步, 通过范德瓦耳斯力相结合的二维材料很好地解决了这个问题, 它可以很干净地引入长周期的超晶格[3-9]. 早期最具代表性的是石墨烯/氮化硼(Gr/hBN)体系, 由于石墨烯和氮化硼的晶格匹配引入的长周期势, 使得实验上可以清晰地观测超晶格电阻峰[3-7]和Hofstadter 分形结构[4-6,10]. 但是, 在这个超晶格体系里面, 由于氮化硼与石墨烯的能带色散关系差异巨大, 两者之间无法耦合. 直到2018年, 科学家们在实验上获得了转角石墨烯体系, 这种超晶格体系中两层石墨烯的能带色散关系一致, 引入了层间电子耦合, 成功得到了摩尔超晶格体系中的强关联量子多体体系, 惊讶又毫不意外地发现了超导、铁电、铁磁等一系列凝聚态物理现象. 由此, 摩尔超晶格体系开始引起凝聚态物理学界的大范围关注, 大量优秀的理论和实验凝聚态学者开始涉猎这个领域, 相互促进发展.

    • 关联绝缘态、高温超导这类强关联现象通常存在于电子浓度较大, 电子速度较慢的体系中. 用倒空间能带的语言描述, 即体系往往呈现平带的形状. 在平带中, 电子的运动速度缓慢, 因此具有极小的动能, 满足出现强关联的基本条件. 2011年, 德克萨斯大学奥斯汀分校的Allan H. MacDonald课题组[11]理论上预言了一种摩尔超晶格体系—转角石墨烯(TBG), 在角度为1.1°的情况下, 体系中会出现平带, 如图1(a),(b)所示. 然而由于技术发展的限制和样品制备的困难, 较少有课题组进行“魔角”石墨烯体系的探索. 直到2018年, 麻省理工的Pablo Jarillo-Herrero课题组[12,13]成功制备出“魔角”石墨烯, 在实验上实现了这个全新的强关联体系.

      图  1  “魔角”石墨烯 (a) 摩尔超晶格和摩尔布里渊区示意图[12]; (b) 能带图[13]; (c) 半填充的莫特绝缘态和拱形的超导态[13]; (d) 3/4填充处的量子反常霍尔效应[36]

      Figure 1.  Magic angle twisted bilayer graphene: (a) Moiré pattern and the mini Brillouin zone[12]; (b) band energy E of TBG at $ \theta ={1.05}^{\circ } $[13]; (c) phase diagram with mott insulating states at half filling and gate-tunable superconductivity domes nearby[13]; (d) quantum anomalous Hall effect near 3/4 filling and schematic band structure at full filling ($ \nu =4 $) and 3/4 filling ($ \nu =3 $)[36].

      如何获得确定转角的石墨烯体系是这项任务的一个难点, 早期科学家们尝试用传统的转移方法, 将剥离的单层石墨烯样品通过直边对准的方式转移到另一个单层的石墨烯样品上. 然而, 这种方法一是很难确定直边的类型究竟是armchair还是zigzag, 二是在角度上很难精准地把控. 直到2016年德克萨斯大学奥斯汀分校的Emanuel Tutuc课题组[14]提出了“tear and stack”的制备方法, 突破了这个难题. 用剥离的氮化硼盖住一整片石墨烯的一半, 揭起氮化硼, 利用范德瓦耳斯力把这一半石墨烯提起, 而另一半留在硅片上, 从而将整片石墨烯一分为二, 再利用转移台旋转一定角度后将两片分离的石墨烯堆垛在一起. 由于上下两层都来自于同一片石墨烯, 因此角度能够得到很精准的把控. 除此之外, 为了尽量将样品做到干净, 可以利用机械力将气泡挤出石墨烯, 但这种方法同时也带来了让角度归零的风险[15,16].

      两层石墨烯堆垛的时候, 由于Bernal堆垛(也称AB堆垛)是能量最低的堆垛方式, 因此转角会倾向于Bernal堆垛, 也就是0°转角. 而“魔角”是1.1°转角[11], 非常接近0°, 因此一旦有热、力或其他干扰因素, 会使得这个1.1°的小转角非常容易回到零转角[17-19]或转到大角度[20], 这也是为什么用力将气泡挤出转角石墨烯的时候会有转角变化的风险. 实际上, 早在魔角石墨烯出来之前, 马普所的Jurgen H. Smet课题组[21]、麻省理工的Pablo Jarillo-Herrero课题组[22]和德克萨斯大学奥斯汀分校的Emanuel Tutuc课题组[23]等多个研究小组制备了TBG样品并研究了其低温输运性质, 但是它们的转角要么偏大(约2°), 要么偏小(约0.8°); 罗格斯大学的Eva Y Andrei课题组[24]、北京师范大学的何林课题组[25]在转角石墨烯体系中利用扫描隧道显微镜(STM)测量也研究过TBG, 发现费米速度显著减小, 预示着转角石墨烯的角度接近1.1°的时候可能会有平带的出现.

      直到2018年, 曹原和Pablo Jarillo-Herrero等[12]终于克服了这些困难, 成功制备出“魔角”石墨烯, 并证实了该体系中平带的存在. 其中“魔角”石墨烯中的费米速度只有单层石墨烯的1/25, 且在大于40 K时电中性点(CNP)处能够看到电导最小值随载流子浓度的变化是一条平直的线, 而不是像单层石墨烯一样具有CNP处的电阻峰. 同时, 在半填充处, 发现了电导骤降的绝缘态(图1(c)), 在温度达到4 K时绝缘态会相变成金属态, 在磁场逐渐变大的过程中绝缘态会被逐渐抑制, 且该现象与磁场方向无关, 说明绝缘态处的能隙来源于电子自旋劈裂而非轨道磁矩.

      更有意思的是, 他们同时发现“魔角”石墨烯在半填充关联绝缘态附近出现了超导现象[13](图1(c)). 超导转变温度为1.7 K, 通过临界电流的测量, 证实了这是个BKT相变, 同时临界电流随磁场的响应图出现了类似于超导量子干涉仪(SQUID)测量中的干涉图样, 这些现象都表明魔角石墨烯是一个二维超导体系. 另外, 垂直临界磁场和水平临界磁场与温度的关系也满足Ginzburg-Landau理论, 但是零温下的临界水平磁场相比计算得到的BCS理论值要稍微大些, 这些现象意味着“魔角”石墨烯体系可能是非常规的超导体. 随后, Andrea F. Young和Cory R. Dean课题组[26]发现通过压力可以在1.27°非魔角转角石墨烯体系中诱导出超导态, 这是因为通过加压的方式可以使得两层石墨烯之间具有更强的耦合, 从而得到压力可调的超导态. 同时, 随着转角样品质量的提高, “魔角”石墨烯具有了更好的均匀性, 在1/4和3/4填充处隐约浮现出电阻峰的迹象. Dmitri K. Efetov课题组[16]通过机械力挤出气泡的方式进一步提高了样品的质量, 通过与Adrian Bachtold课题组[16]合作, 他们在价带和导带的填充数分别为1/4, 1/2, 3/4时都测到了关联绝缘态, 意味着所有的自旋和谷都发生了退简并. 更重要的是, 超导态不仅出现在半填充数处的绝缘态附近, 同时也存在于1/4或3/4填充数的绝缘态附近, 并且具有高达3 K的超导转变温度, 说明样品的质量得到了很大的提升.

      以上的实验中, “魔角”石墨烯的超导态总是出现在有绝缘态的时候, 似乎都在指向TBG中超导态的本质来源类似于非常规超导. 然而, 后续实验的跟进渐渐出现了不同的声音, 一些学者发现当在“魔角”石墨烯体系中叠上一层WSe2后, 由于WSe2会在TBG中引入强的自旋轨道耦合, 超导态不仅能与绝缘态相互独立存在, 且超导态相比于单纯的TBG体系能够在更小的角度下存在, 这意味着绝缘态和超导态的物理来源可能不一样[27]. 同时, 学者们发现当使用更薄的氮化硼介电层时, 超导态能够在没有关联绝缘态的情况下出现, 这意味着库仑屏蔽效应可能会影响超导态和绝缘态产生[28,29]. 针对这个问题, J. I. A. Li课题组[30]利用原位过程系统地研究了库仑屏蔽效应对“魔角”石墨烯体系中超导态和绝缘态的的影响. 作者在TBG体系上设计了可调的Bernal双层石墨烯堆垛的调控层, 通过调控双层石墨烯中的载流子浓度来达到定量调控TBG中库仑屏蔽的目的. 实验发现由于屏蔽作用导致TBG中库仑相互作用变弱时, 绝缘态被削弱而超导态增强, 这种现象类似于常规超导体中弱的库仑相互作用会稳固超导, 其本质来源于电声耦合. 这进一步说明了TBG中随温度变化呈线性的电阻可能不一定来源于类似高温铜氧化物中的奇异金属[31,32], 也可能来源于常规超导体中的电声耦合[33,34]. 总的来说, “魔角”石墨烯体系中的超导是否是常规超导还不得而知, 后续还需要更多的实验来论证.

      除了关联绝缘态和超导态之外, 斯坦福大学的David Goldhaber-Gordon课题组[35]在转角石墨烯体系导带填充数为3/4处发现了铁磁态, 测到了反常霍尔信号和磁滞回线, 他们认为这是由于封装的hBN和TBG对齐的结果. 之后, Andrea F. Young课题组[36]进一步的实验确认了在和hBN对齐的TBG样品中存在陈数为1的量子反常霍尔效应, 如图1(e)所示. 铁磁态往往来源于铁、钴、镍等带磁性的原子, 或者来源于重金属元素引入的自旋轨道耦合效应. 而转角石墨烯不满足以上任何一个条件, 因此学者们推测是因为TBG与hBN对齐后打破C2对称性并引入带隙, 与TBG中强关联的摩尔平带共同作用形成陈绝缘体, 从而可以在实验上测得铁磁态和量子反常霍尔效应.

      后来学者发现不需要TBG和hBN对齐也可以观测到非平庸的拓扑物态. 此时C2对称性保持, 但是时间反演对称性($ T $)被电子-电子相互作用和磁场打破, 从而使得体系表现出具有非零陈数的拓扑属性. 国际上多个知名课题组[37-40]相继在魔角TBG中通过输运和扫描谱学等不同手段观测到该现象, 并发现顺序填充的陈数, 其中C = 4–vC = –4–v分别对应电子和空穴摩尔平带. 很有意思的是, 中国科学院物理研究所的研究团队[41]发现非魔角的TBG也具有非平庸拓扑物态, 其陈数和魔角TBG的一致. 因此, 电子关联和拓扑物态的相互关系有待于进一步的研究.

      总而言之, 自从“魔角”石墨烯出现以来, 超导、关联绝缘态、拓扑、磁性等现象引起了人们广泛的关注. 其中层出不穷的新现象还留有诸多疑问, 但不可否认的是, 转角石墨烯体系是凝聚态物理中一个崭新的体系分支, 它的出现可以为强关联体系提供一个新的研究思路, 推进凝聚态物理的发展.

    • “魔角”石墨烯的诞生引起了巨大的轰动, 人们自然会想, 其他体系中会不会也存在着类似的强关联现象?加州大学伯克利分校的Feng Wang课题组和复旦大学的张远波课题组等在ABC堆垛的三层石墨烯和hBN对齐的摩尔超晶格体系中发现了具有垂直电场可调的平带结构, 载流子在1/4填充和1/2填充时出现了关联绝缘态[42], 同时在一定的位移电场下, 在1/4填充处出现了超导态[43](图2(a)); 同样在1/4填充处也发现了陈绝缘体和铁磁态[44]. 中国科学院物理研究所张广宇课题组[45]、哈佛大学的Philip Kim课题组[46]和麻省理工的Pablo Jarillo-Herrero课题组[47]在转角双层-双层石墨烯(TDBG)中发现了电场可调的平带结构, 如图2(b)所示, 并且观察到了绝缘态[46-48]和类似超导[45,46]的迹象. 但是不同于TBG中磁场的增大会抑制关联绝缘态, TDBG中磁场的增大会增强关联绝缘态, 同时测到了塞曼效应, $ g $因子为2, 说明这是个自旋极化体系[45-47,49]. 虽然TDBG有类似超导的迹象, 但是TDBG中的超导在转变温度以下电阻并未到零, 一些学者认为这种态是另一种基态而非超导态[50]. 而对于大转角下的TDBG, 可以通过双栅结构来调控层间耦合[51], 在重构的费米面下会出现新的关联绝缘态、电荷密度波等一系列复杂的相[52].

      图  2  电场可调的多层石墨烯转角体系 (a) ABC堆垛的三层石墨烯/氮化硼摩尔超晶格中关联绝缘态和超导态[43]; (b) 转角双层-双层石墨烯(TDBG, 2+2)中的关联绝缘态[45]; (c) 转角单层-双层石墨烯(TMBG, 1+2)中的关联绝缘态[54]; (d) 转角三层石墨烯体系(MATTG, 1+1+1)中的超导态[56]

      Figure 2.  Field tunable multilayer graphene twisted moiré superlattice systems: (a) Signatures of Mott insulator and the superconducting (SC) phase in ABC-trilayer graphene/hBN superlattice[43]; (b) correlated insulating states in twisted double bilayer graphene (TDBG)[45]; (c) correlated insulating states in twisted monolayer-bilayer graphene (TMBG)[54]; (d) MATTG phase diagrams, and the superconductivity is colored in blue[56].

      除了对称的转角石墨烯体系, 在非对称的单层-双层转角石墨烯(TMBG)体系中, 也发现了非对称的关联绝缘态(图2(c)), 同时存在类似超导的迹象和铁磁态[53-55]. 最近, 麻省理工的Pablo Jarillo-Herrero课题组[56]、哈佛大学的Philip Kim课题组[57]在转角三层石墨烯体系中取得重要进展. 转角三层石墨烯样品, 即“1+1+1”体系, 第一层和第三层石墨烯相对于中间层石墨烯的转角分别为$ \theta $$ -\theta $, 在$ \theta ={1.6}^{\circ } $附近发现强关联的超导态. 相比于魔角石墨烯, 转角三层石墨烯的超导态可以在有限的位移电场下大范围地存在, 如图2(d)中的亮蓝色区域[56], 这意味着超导态在转角三层石墨烯体系中可以更加稳定地存在.

      此外, 在转角硒化钨(WSe2)中, 发现了大转角范围内的关联绝缘态[58]. 在转角硒化钨/硫化钨(WSe2/WS2)异质结中发现了莫特绝缘态和维纳尔晶格态[59,60]. 另外, 在WSe2/WS2[61], MoSe2/WS2[62]和MoSe2/WSe2[63,64]转角超晶格中都发现了摩尔激子.

    • 自实验上证明了转角石墨烯和转角过渡金属硫化物(TMD)材料的物理价值后, 更多的理论学家们开始涉猎摩尔超晶格体系的理论研究[65-67]. 而且, 这些摩尔超晶格结构简单、能带电场可调, 和量子模拟器的概念契合度很高, 非常适合用来模拟复杂的量子多体系统. 于是, 人们陆续提出利用摩尔超晶格构造量子模拟器.

      德克萨斯大学奥斯汀分校的Allan H. MacDonald课题组[68]在研究二维TMD摩尔超晶格异质结体系时最早提出, 由于这个体系产生的平带可以被一个简单的三角格点Hubbard模型来描述, 相关的参数, 特别是体系动能与多体相互作用强度的比率, 可以较好地由转角来调控, 因此可以利用这个体系来研究三角格点Hubbard模型的物理. 这个理论预测后来得到了加州大学伯克利分校的Feng Wang课题组[59]和康奈尔大学的Jie Shan和Kin Fai Mak课题组[60]的实验验证. 他们分别通过光学与电输运的实验测量发现, 当价带顶的第一条超晶格能带被半填充时, WSe2/WS2 摩尔超晶格体系会出现一个具有Curie-Weiss行为的反铁磁莫特绝缘态(图3(a)). 这一现象与三角格点Hubbard模型在强电子关联效应下的预期一致. 此外, Jie Shan和Kin Fai Mak课题组[69]进一步的实验发现, 在这个WSe2/WS2摩尔超晶格体系中, 当价带顶能带处于一系列分数填充时, 即当填充数ν = 1/2, 2/5, 1/3, 1/4, 1/7等, 也会出现一些特殊的关联绝缘态(图3(b)). 这些关联绝缘态所处的分数填充值以及大部分关联绝缘态的转变温度, 都与包含长程电子关联相互作用的扩展Hubbard模型描述的结果符合. 因此支持了可以将摩尔超晶格作为研究Hubbard模型强关联体系的量子模拟器的想法.

      图  3  转角过渡金属硫化物的关联效应 (a) WSe2/WS2异质摩尔超晶格半填充处的莫特绝缘态和不同填充处下的磁化率$ \chi \propto g-{g}_{0} $, 和Weiss常数$ \theta $[60]; (b) WSe2/WS2质摩尔超晶格分数填充处的关联绝缘态[69]; (c) WSe2/WSe2同质摩尔超晶格的关联绝缘态[58]

      Figure 3.  Correlated insulating states in twisted TMD superlattice: (a) Signature of correlated insulator at half filling in WSe2/WS2 moiré superlattice[60]; (b) fractional insulating states in WSe2/WS2 moiré superlattice[69]; (c) transport signature of half filling insulator in twisted WSe2/WSe2 moiré superlattice[58].

      同一时期, 哥伦比亚大学的Cory R. Dean和Abhay N. Pasupathy课题组与马普所的Angel Rubio课题组[58]合作, 通过实验与理论结合的方法, 在双层转角WSe2体系中, 也发现了半填充关联绝缘态的存在, 见图3(c), 并且这些关联绝缘态的行为可以被三角格点Hubbard模型描述. 他们因此也提出可以通过研究这种摩尔超晶格体系来研究二维三角格点强关联体系. 理论研究上, 除了Allan H. MacDonald课题组的工作, 马普所的Angel Rubio课题组也通过一系列工作, 利用第一性原理计算和强关联计算方法, 预测了在双层转角hBN[70]、双层转角MoS2[71]以及双层转角GeSe[72]中, 在转角较小的情况下也能产生平带, 并且这些平带分别可以作为研究二维三角格点、六方蜂巢格点、准一维格点强关联体系的量子模拟平台, 并通过总结相关的理论和实验工作, 正式提出摩尔超晶格体系可以作为基于凝聚态体系的量子模拟器来研究各种量子关联体系, 并展望了摩尔量子模拟器未来的发展[73].

      基于摩尔量子模拟器的成功, 理论上能更准确地预测实验体系和材料, 也为今后二维摩尔超晶格体系的研究指明方向.

    • “魔角”石墨烯的诞生给予了物理学界一个巨大的惊喜, 其中关联绝缘态、超导态、铁磁态等一系列物理问题几乎囊括了当今凝聚态物理的几大重要热门话题. 那么首要问题就是在实验和理论上更加深入地研究“魔角”石墨烯中超导和关联绝缘态的本质, 揭开非常规高温超导的神秘面纱[74,75]. 其次, “魔角”石墨烯的成功使得二维材料器件多了一个转角的调控维度, 例如不同转角的二维准晶[76-79]、小角度的转角石墨烯[80-82]、晶格场调制[83]、以及对转角电子学器件实现电磁调控应用[84-86]等. 此外, 转角电子学还会涉及拓扑物理[87-89]、流体力学[90]、二维磁性材料[91]和二维超导体等. 毫无疑问, “魔角”石墨烯给凝聚态物理带来了巨大的机遇, 其中无论是物理本质层面还是应用层面, 都有很多可深入挖掘的现象值得探讨, 也是转角电子学发展的最好契机.

参考文献 (91)

目录

    /

    返回文章
    返回