搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验

张战刚 杨少华 林倩 雷志锋 彭超 何玉娟

引用本文:
Citation:

基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验

张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟

Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau

Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan
PDF
HTML
导出引用
  • 本文基于海拔为4300 m的拉萨羊八井国际宇宙射线观测站, 开展了14 nm FinFET和28 nm平面互补金属氧化物半导体(complementary metal oxide semiconductor, CMOS)工艺静态随机存取存储器(static random-access memory, SRAM)阵列的大气辐射长期实时测量试验. 试验持续时间为6651 h, 共观测到单粒子翻转(single event upset, SEU)事件56个, 其中单位翻转(single bit upset, SBU) 24个, 多单元翻转(multiple cell upset, MCU) 32个. 结合之前开展的65 nm工艺SRAM结果, 研究发现, 随着工艺尺寸的减小, 器件的整体软错误率(soft error rate, SER)持续降低. 但是, 相比于65和14 nm工艺器件, 28 nm工艺器件的MCU SER最大, 其MCU占比(57%)超过SBU, MCU最大位数为16位. 虽然14 nm FinFET器件的Fin间距仅有35 nm左右, 且临界电荷降至亚fC, 但FinFET结构的引入导致灵敏区电荷收集和共享机制发生变化, 浅沟道隔离致使电荷扩散通道“狭窄化”, 另一方面灵敏区表面积减小至0.0024 μm2, 从而导致14 nm工艺器件SBU和MCU的软错误率均明显下降.
    Based on the Yangbajing International Cosmic Ray Observatory in Lhasa with an altitude of 4300 m, a long-term real-time experiment is carried out in order to measure the atmospheric radiation induced soft errors in 14 nm FinFET and 28 nm planar CMOS SRAM array. The underlying mechanisms are also revealed. Five boards are used in the test, four of which are equipped with 28-nm process devices, and one board is equipped with 14-nm process devices. After removing the unstable bad bits, the actual effective test capacity is 7.1 Gb. During the test, the on-board FPGA reads the stored contents of all the tested devices in real time, reports the error information (occurrence time, board number, column number, device number, error address, error data) and corrects the error. The duration of the test is 6651 h. A total of 56 single event upset (SEU) events are observed, they being 24 single bit upset (SBU) events and 32 Multiple Cell Upset (MCU) events. Based on previous results of 65-nm SRAM, the study finds that SER continues to decrease with the reduction of process size, but the proportion of MCU in 28-nm process devices (57%) exceeds SBU, which is a process “maximum point” of MCU sensitivity, and the maximum size of MCU is 16 bits. Although the Fin spacing of the 14-nm FinFET device is only about 35 nm, and the critical charge decreases to sub-fC, the introduction of the FinFET structure leads to the change of charge collection and the sensitive volume sharing mechanism , and the shallow trench isolation leads to the narrowing of the charge diffusion channel. On the other hand, the surface area of the sensitive volume decreases to 0.0024 μm2, resulting in a significant decrease in the soft error rate of both SBU and MCU in the 14-nm process.
      通信作者: 杨少华, young01@163.com ; 林倩, 523618482@qq.com
    • 基金项目: 国家自然科学基金(批准号: 12175045, 12075065)和广东省重点领域研发计划(批准号: 2022B0701180002)资助的课题.
      Corresponding author: Yang Shao-Hua, young01@163.com ; Lin Qian, 523618482@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175045, 12075065) and the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2022B0701180002).
    [1]

    Ziegler J 2004 SER-History, Trends and Challenges (San Jose: Cypress Semiconductor) pp1–50

    [2]

    JESD89 A 2006 Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [3]

    张战刚, 雷志锋, 黄云, 恩云飞, 张毅, 童腾, 李晓辉, 师谦, 彭超, 何玉娟, 肖庆中, 李键坷, 路国光 2022 原子能科学技术 56 725

    Zhang Z G, Lei Z F, Huang Y, En Y F, Zhang Y, Tong T, Li X H, Shi Q, Peng C, He Y J, Xiao Q Z, Li J K, Lu G G 2022 At. Energy Sci. Technol. 56 725

    [4]

    Seifert N, Kirsch M 2012 IEEE Trans. Nucl. Sci. 59 2818Google Scholar

    [5]

    Autran J L, Munteanu D, Serre S, Sauze S 2012 IEEE International Reliability Physics Symposium (IRPS) Anaheim, CA, April 15–19, 2012 p5B.1.1

    [6]

    Autran J L, Roche P, Borel J, Sudre C, Castellani-Coulié K, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [7]

    Autran J L, Roche P, Sauze S, Gasiot G, Munteanu D, Loaiza P, Zampaolo M, Borel J 2009 IEEE Trans. Nucl. Sci. 56 2258Google Scholar

    [8]

    Autran J L, Munteanu D, Roche P, Gasiot G, Martinie S, Uznanski S, Sauze S, Semikh S, Yakushev E, Rozov S, Loaiza P, Warot G, Zampaolo M 2010 Microelectron. Reliab. 50 1822Google Scholar

    [9]

    Xilinx, Device reliability report (UG116), https://www.xilinx.com/ [2023-2-1]

    [10]

    Lesea A, Drimer S, Fabula J J, Carmichael C, Alfke P 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar

    [11]

    White paper: Xilinx FPGA families, “Continuing experiments of atmospheric neutron effects on deep submicron integrated circuits” WP286 (v2.0), Mar. 22, 2016

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [14]

    Hubert G, Velazco R, Federico C, Cheminet A, Silva-Cardenas C, Caldas L V E, Pancher F, Lacoste V, Palumbo F, Mansour W, Artola L, Pineda F, Duzellier S 2013 IEEE Trans. Nucl. Sci. 60 2418Google Scholar

    [15]

    Alexandrescu D, Lhomme-Perrot A, Schaefer E, Beltrando C 2009 15th IEEE International On-Line Testing Symposium Sesimbra, Lisbon, Portugal, June 24–26, 2009 p179

    [16]

    Torok Z, Platt S P, Cai X X 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [17]

    Tosaka Y, Takasu R, Uemura T, Ehara H, Matsuyama H, Satoh S, Kawai A, Hayashi M 2008 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 27–May 1, 2008 p727

    [18]

    Kameyama H, Yahagi Y, Ibe E 2007 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 15–19, 2007 p678

    [19]

    Ibe E, Yahagi Y, Kataoka F, Saito Y, Eto A, Sato M 2002 ICITA Bathurst, Australia, November 25–28, 2002 No. 273-21

    [20]

    Kobayashi H, Usuki H, Shiraishi K, Tsuchiya H, Kawamoto N, Merchant G, Kase J 2004 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 25–29, 2004 p288

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [22]

    http://www.ihep.cas.cn/picture/dkxzz/ybjgjyzxgcz/ [2023-2-1]

    [23]

    http://phits.jaea.go.jp/expacs/ [2023-2-1]

    [24]

    https://cosmicrays.oulu.fi/ [2023-2-1]

    [25]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [26]

    Yang W T, Yin Q, Li Y, Guo G, Li Y H, He C H, Zhang Y W, Zhang F Q, Han J H 2019 Nucl. Sci. Techn. 30 45Google Scholar

    [27]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 物理学报 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [28]

    Yang S H, Zhang Z G, Lei Z F, Huang Y, Xi K, Wang S L, Liang T J, Tong T, Li X H, Peng C, Wu F G, Li B 2022 Chin. Phys. B 31 126103Google Scholar

  • 图 1  羊八井国际宇宙射线观测站

    Fig. 1.  Yangbajing International Cosmic Ray Observatory.

    图 2  试验现场图及测试结果

    Fig. 2.  Experimental setup and test results.

    图 3  上位机软件测试界面

    Fig. 3.  Software test interface on the computer.

    图 4  试验流程图

    Fig. 4.  Test flow chart.

    图 5  高海拔试验点的大气辐射环境[3]

    Fig. 5.  Atmospheric radiation environment of the high-altitude test site[3].

    图 6  SEU累积计数与TTF的关系图

    Fig. 6.  Relationship between SEU cumulative count and TTF

    图 7  SEU, SBU和MCU SER与工艺尺寸的关系

    Fig. 7.  Relationship between SERs of SEU, SBU, MCU and feature size.

    图 8  各种工艺尺寸下的SBU和MCU占比

    Fig. 8.  Proportion of SBU and MCU under various feature sizes.

    图 9  芬兰奥卢宇宙射线站监测的大气中子通量变化情况(1965年至今)[24]

    Fig. 9.  Changes of atmospheric neutron flux monitored by Oulu Cosmic Ray Station in Finland (1965 till now)[24].

    图 10  试验期间芬兰奥卢宇宙射线站监测的大气中子通量变化情况

    Fig. 10.  Changes of atmospheric neutron flux monitored by Oulu Cosmic Ray Station in Finland during the test.

    图 11  14 nm FinFET器件的Fin结构图像

    Fig. 11.  Fin structure of the 14 nm FinFET device.

    图 12  14 nm FinFET器件模型图

    Fig. 12.  Model of the 14 nm FinFET device.

    图 13  不同入射角下两个器件的单粒子瞬态脉冲图 (a) T1瞬态脉冲; (b) T2瞬态脉冲

    Fig. 13.  Single event transients of two transistors at different incidence angles: (a) T1 transient pulse; (b) T2 transient pulse.

    表 1  被测器件参数

    Table 1.  Parameters of devices under test.

    编号SRAM工艺型号容量核心电压/V测试板编号测试数量封装形式备注
    1#14 nm FinFETAG35128 Mbit (8 M×16 bit)0.84#18只倒装BGA总测试容量:
    7.1 Gbit
    (去除坏位)
    2#28 nm HKMGAH09F64 Mbit (4 M×16 bit)1.051#、2#各19只
    3#28 nm SIONAC8164 Mbit (4 M×16 bit)1.053#、5#17只、20只
    下载: 导出CSV

    表 2  测量结果汇总

    Table 2.  Summary of test results

    编号TTF /h板号列号器件编号错误地址错误数据错误类型
    开始测试
    12#B10x0C7A700x5455SBU
    21093#B20x06DBBC
    0x06DBCC
    0x55D5MCU2
    31905#B50x02B589
    0x02B599
    0x02B5A9
    0x55D5MCU3
    44605#D20x2CB0480x555DSBU
    55283#B10x3C23680x5D55SBU
    68611#B10x0B150F0x5575SBU
    72#A50x12ACC9
    0x12ACD9
    0x5455MCU2
    811281#C10x3C1F740x5755MCU3
    0x3C1F830x5755
    0x3C20010x5455
    92#B40x131353
    0x131354
    0x131363
    0x131364
    0x7555MCU4
    102#A10x040D82
    0x040D83
    0x040D92
    0x040D93
    0x5155MCU4
    1115745#B30x0B57250x5551SBU
    1215835#C20x0361450x5554SBU
    1317013#C40x03BBE8
    0x03BBE9
    0x03BBF8
    0x03BBF9
    0x5515MCU4
    1417283#C40x3D4BD8
    0x3D4BE8
    0x3D4BF7
    0x3D4BF8
    0x7555MCU4
    152#B30x201A55
    0x201A65
    0x5755MCU2
    162#C10x04931E0x5551SBU
    1718213#A20x01F573
    0x01F574
    0x01F583
    0x01F584
    0x01F593
    0x01F594
    0x01F5A3
    0x01F5E6
    0x5557MCU8
    1818965#D10x377B7B0x5515SBU
    192#C40x1371CB
    0x1371EA
    0x1371F9
    0x1371FA
    0x13720A
    0x13721A
    0x13722A
    0x137237
    0x137238
    0x137247
    0x137248
    0x137257
    0x137258
    0x137267
    0x137268
    0x137277
    0xD555MCU16
    202#A50x020319
    0x020329
    0x55D5MCU2
    212#B20x1EBD02
    0x1EBD12
    0x5545MCU2
    222#B20x1AA6E80x5557SBU
    232#D20x35DC4C
    0x35DC5C
    0x35DC6C
    0x555DMCU3
    2423365#C20x0DB4840x5554SBU
    2525371#C10x12C6AE
    0x12C6AF
    0x12C6BE
    0x12C6BF
    0x5155MCU4
    2626315#C50x1157DD
    0x1157ED
    0x1157EE
    0x1157FD
    0x1157FE
    0x5575MCU5
    2726595#B40x27B8630x4555SBU
    2828985#D30x22C4A80x5575SBU
    2929093#C10x1FC2CE0x7555SBU
    3030033#A20x30B1F3
    0x30B203
    0x30B213
    0x5551MCU3
    312#C10x2800CA
    0x2800D9
    0x2800E9
    0x5D55MCU3
    322#A40x256BB0
    0x256BB1
    0x256BC0
    0x256BC1
    0x256BD0
    0x256BD1
    0x256BE0
    0x256BE1
    0x4555MCU8
    3334441#A50x28940C
    0x28941C
    0x28941D
    0x5455MCU3
    3435771#A40x31B05F0x5155SBU
    3535861#B20x1491E7
    0x1491E8
    0x5575MCU2
    3636023#C10x250F89
    0x250F98
    0x5554MCU2
    3737055#B30x3CAAFA
    0x3CAAFB
    0x3CAB0A
    0x3CAB0B
    0x3CAB1A
    0x3CAB1B
    0x4555MCU6
    3837755#D10x2CADB40x5557SBU
    3939133#D10x3AC5DD
    0x3AC5DE
    0x5575MCU2
    4041913#B50x22DEA30x5455SBU
    4142163#D20x3785ED
    0x3785FD
    0x4555MCU2
    4244071#B20x3611650x5554SBU
    4346244#A30x64D7B00x5D55SBU
    4446521#A20x001763
    0x001754
    0x001753
    0xD555MCU3
    4549075#C50x1753E90x5575SBU
    462#B50x1A220A
    0x1A220B
    0x1A221A
    0x1A221B
    0x5155MCU4
    4753705#A40x0AF8C1
    0x0AF8D1
    0x0AF8E1
    0x0AF8F1
    0x555DMCU4
    4854685#B50x1D49870x5755SBU
    3#C50x0D82B00x5545假SEU
    3#C50x0D82B00x5545
    4960864#D40x1263CA0x4555SBU
    5060945#C50x3ECD72
    0x3ECD82
    0x5755MCU2
    512#D50x27340D
    0x27341D
    0x27342D
    0x27343D
    0x5545MCU4
    5262445#C30x077D9A0x5545SBU
    536244.23#C30x2890970x5155SBU
    542#A30x173626
    0x173636
    0x5554MCU2
    556248.25#B50x177AE10x5155SBU
    566390.25#C40x04619D
    0x0461BC
    0x7555MCU2
    6651.2试验结束
    下载: 导出CSV

    表 3  14 nm FinFET, 28 nm和65 nm SRAM的存储单元尺寸和灵敏区参数

    Table 3.  Memory cell size and SV parameters for the 14 nm FinFET, 28 nm and 65 nm SRAM devices.

    器件工艺65 nm28 nm14 nm FinFET
    存储区图像(未按比例)
    存储单元尺寸1000 nm×500 nm520 nm×240 nm370 nm×180 nm
    SV尺寸200 nm×190 nm104 nm×90 nm80 nm×30 nm
    临界电荷/fC1[25]0.18[26]0.05[27]
    下载: 导出CSV

    表 4  14 nm FinFET器件建模的结构参数

    Table 4.  Structural parameters for modeling 14 nm FinFET device.

    区域类别参数
    衬底厚度/nm100
    栅极长度/nm26
    栅氧层厚度/nm1.35
    Fin高/nm45
    Fin宽/nm14
    下载: 导出CSV

    表 5  14 nm FinFET器件模型掺杂情况

    Table 5.  Doping parameters of 14 nm FinFET device model.

    掺杂类别区域掺杂浓度/(1016 cm–3)
    均匀掺杂衬底1.0 (掺硼)
    沟道1.0 (掺硼)
    高斯掺杂漏区10000.0 (掺磷)
    源区10000.0 (掺磷)
    下载: 导出CSV
  • [1]

    Ziegler J 2004 SER-History, Trends and Challenges (San Jose: Cypress Semiconductor) pp1–50

    [2]

    JESD89 A 2006 Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [3]

    张战刚, 雷志锋, 黄云, 恩云飞, 张毅, 童腾, 李晓辉, 师谦, 彭超, 何玉娟, 肖庆中, 李键坷, 路国光 2022 原子能科学技术 56 725

    Zhang Z G, Lei Z F, Huang Y, En Y F, Zhang Y, Tong T, Li X H, Shi Q, Peng C, He Y J, Xiao Q Z, Li J K, Lu G G 2022 At. Energy Sci. Technol. 56 725

    [4]

    Seifert N, Kirsch M 2012 IEEE Trans. Nucl. Sci. 59 2818Google Scholar

    [5]

    Autran J L, Munteanu D, Serre S, Sauze S 2012 IEEE International Reliability Physics Symposium (IRPS) Anaheim, CA, April 15–19, 2012 p5B.1.1

    [6]

    Autran J L, Roche P, Borel J, Sudre C, Castellani-Coulié K, Munteanu D, Parrassin T, Gasiot G, Schoellkopf J P 2007 IEEE Trans. Nucl. Sci. 54 1002Google Scholar

    [7]

    Autran J L, Roche P, Sauze S, Gasiot G, Munteanu D, Loaiza P, Zampaolo M, Borel J 2009 IEEE Trans. Nucl. Sci. 56 2258Google Scholar

    [8]

    Autran J L, Munteanu D, Roche P, Gasiot G, Martinie S, Uznanski S, Sauze S, Semikh S, Yakushev E, Rozov S, Loaiza P, Warot G, Zampaolo M 2010 Microelectron. Reliab. 50 1822Google Scholar

    [9]

    Xilinx, Device reliability report (UG116), https://www.xilinx.com/ [2023-2-1]

    [10]

    Lesea A, Drimer S, Fabula J J, Carmichael C, Alfke P 2005 IEEE Trans. Device Mater. Reliab. 5 317Google Scholar

    [11]

    White paper: Xilinx FPGA families, “Continuing experiments of atmospheric neutron effects on deep submicron integrated circuits” WP286 (v2.0), Mar. 22, 2016

    [12]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [13]

    Chen W, Guo X, Wang C, Zhang F, Qi C, Wang X, Jin X, Wei Y, Yang S, Song Z 2019 IEEE Trans. Nucl. Sci. 66 856Google Scholar

    [14]

    Hubert G, Velazco R, Federico C, Cheminet A, Silva-Cardenas C, Caldas L V E, Pancher F, Lacoste V, Palumbo F, Mansour W, Artola L, Pineda F, Duzellier S 2013 IEEE Trans. Nucl. Sci. 60 2418Google Scholar

    [15]

    Alexandrescu D, Lhomme-Perrot A, Schaefer E, Beltrando C 2009 15th IEEE International On-Line Testing Symposium Sesimbra, Lisbon, Portugal, June 24–26, 2009 p179

    [16]

    Torok Z, Platt S P, Cai X X 2007 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10–14, 2007 p1

    [17]

    Tosaka Y, Takasu R, Uemura T, Ehara H, Matsuyama H, Satoh S, Kawai A, Hayashi M 2008 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 27–May 1, 2008 p727

    [18]

    Kameyama H, Yahagi Y, Ibe E 2007 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 15–19, 2007 p678

    [19]

    Ibe E, Yahagi Y, Kataoka F, Saito Y, Eto A, Sato M 2002 ICITA Bathurst, Australia, November 25–28, 2002 No. 273-21

    [20]

    Kobayashi H, Usuki H, Shiraishi K, Tsuchiya H, Kawamoto N, Merchant G, Kase J 2004 IEEE International Reliability Physics Symposium Phoenix, AZ, USA, April 25–29, 2004 p288

    [21]

    Zhang Z G, Lei Z F, Tong T, Li X H, Xi K, Peng C, Shi Q, He Y J, Huang Y, En Y F 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [22]

    http://www.ihep.cas.cn/picture/dkxzz/ybjgjyzxgcz/ [2023-2-1]

    [23]

    http://phits.jaea.go.jp/expacs/ [2023-2-1]

    [24]

    https://cosmicrays.oulu.fi/ [2023-2-1]

    [25]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [26]

    Yang W T, Yin Q, Li Y, Guo G, Li Y H, He C H, Zhang Y W, Zhang F Q, Han J H 2019 Nucl. Sci. Techn. 30 45Google Scholar

    [27]

    张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞 2020 物理学报 69 056101Google Scholar

    Zhang Z G, Lei Z F, Tong T, Li X H, Wang S L, Liang T J, Xi K, Peng C, He Y J, Huang Y, En Y F 2020 Acta Phys. Sin. 69 056101Google Scholar

    [28]

    Yang S H, Zhang Z G, Lei Z F, Huang Y, Xi K, Wang S L, Liang T J, Tong T, Li X H, Peng C, Wu F G, Li B 2022 Chin. Phys. B 31 126103Google Scholar

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [3] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [5] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [6] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [7] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [8] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [9] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [10] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [11] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [12] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [13] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [14] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] 黄力, 黄安平, 郑晓虎, 肖志松, 王 玫. 高k介质在新型半导体器件中的应用. 物理学报, 2012, 61(13): 137701. doi: 10.7498/aps.61.137701
    [17] 钟国强, 胡立群, 王相綦, 李晓玲, 林士耀, 许平, 段艳敏, 毛松涛, 张继忠. HT-7上射频波加热时中子辐射行为的研究. 物理学报, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
    [20] 贺朝会, 耿 斌, 杨海亮, 陈晓华, 李国政, 王燕萍. 浮栅ROM器件辐射效应机理分析. 物理学报, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
计量
  • 文章访问数:  4780
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-08
  • 修回日期:  2023-03-22
  • 上网日期:  2023-05-18
  • 刊出日期:  2023-07-20

/

返回文章
返回